Anti-dengue serotype-2 activity effect of *Sambucus nigra* leaves-and flowers-derived compounds

Irais Castillo-Maldonado1,2, Maria Maximina Bertha Moreno-Altamirano2* and Luis Benjamín Serrano-Gallardo2*

1Laboratorio de Fitofarmacología, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila, Gregorio A. García s/n, Torreón, Coahuila, México
2Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Ciudad de México City, México

Abstract

Background: Dengue is the most widespread arthropod-borne viral infection in humans. Protective vaccines and effective anti-dengue treatments are still missing. Ancient knowledge on the antimicrobial properties of plants provides a powerful source for new antiviral drugs. *Sambucus nigra*, widely distributed in Mexico, has long been used in traditional medicine, including for some viral infections.

Objective: The purpose of this study was to evaluate *in vitro* if *S. nigra* methanolic extracts have anti-dengue properties.

Method: The antiviral activity was assayed under three experimental conditions: (a) addition of methanolic extracts 1 h before dengue virus serotype-2 (DENV-2) was added to cells; (b) cell pre-incubation with DENV-2, 1 h before adding extracts; and (c) pre-incubation of DENV-2 with the extracts for 1 h, and then adding this mix to the cells (BHK-21 and VERO). After three days of incubation, infection was evaluated by measuring the cytopathic effect, the NS-1 viral protein production, and DENV-2 envelope protein assessment.

Results: *S. nigra* methanolic extracts from both, leaves and flowers, exhibited anti-DENV-2 activity at 400 µg/mL, particularly when DENV-2 was pre-incubated with the extracts before being added to cell cultures.

Introduction

Dengue is caused by any of four dengue virus serotypes (DENV-1, -2, -3, or -4). Every year an estimated of 390 million people are infected worldwide [1]. DENV is a *Flavivirus*, its positive single-stranded RNA encodes for 10 proteins [2]. DENV is transmitted to humans by female *Aedes aegypti* and *Aedes albopictus* mosquitoes [3]. The clinical manifestations of dengue were re-classified by the World Health Organization in 2009 [4]. Despite considerable research aimed at the development of effective anti-dengue therapeutic drugs or vaccines, up to date a worldwide successful vaccination program is still missing. However, anti-dengue vaccine candidates, such as Dengvaxia are currently under clinical trials [5]. The first tetravalent recombinant dengue vaccine was registered in Mexico, and licensed in Brazil, El Salvador, and the Philippines in 2015. An interesting alternative approach for dengue treatment, is the use of medicinal plant-derived compounds, since plant extracts have been therapeutically used since ancient times, and, in many instances, have proven to be effective [6-9]. Some medicinal plants have shown strong antiviral activity, and inhibition of the replicative cycle, both for DNA and RNA viruses [10]. Research on plants against dengue virus is scarce [11-13]. Even the World Health Organization (WHO) has advocated that in DENV endemic areas, traditional medicine should be considered with the purpose of identifying safe and effective antiviral therapeutics.

Sambucus nigra is a Caprifoliaceae or honey suckle family plant, widely distributed in the North of Mexico, its leaves, bark, flowers, and berries have all been used in traditional medicine, and berries have shown antiviral effect against influenza A and B, HIV, and Herpes simplex-1 viruses, as well as against a pathogenic chicken coronavirus [14-19].

The present study was aimed at screening and assessing of the anti-dengue virus activity of methanolic extracts of leaves and flowers of *S. nigra*.

Methods

S. nigra flowers and leaves were collected from the rural municipality of Durango, Mexico (latitude between 24°57' and 25°36'39" N, longitude between 103°46' and 104°24'50"W, altitude between 1100 and 2500 m above sea level), following the good manufacturing practices, proposed by the World Health Organization (WHO, 2003) [20]. Botanical authentication was performed by the Escuela de Biología de la Universidad Juárez, Durango, Mexico, and deposited at the herbarium of the same University, under the taxonomical serial number 525079. Leaves and flowers were air-dried at room temperature and then ground into a fine powder. Methanol (Sigma

Key words: dengue virus, *Sambucus nigra*, anti-viral activity

Received: June 13, 2017; **Accepted:** June 28, 2017; **Published:** June 30, 2017
Anti-DENV-2 activity analyses, showed that methanolic extracts of *S. nigra* leaves and flowers derived compounds rendered a protective effect against DENV-2 when cells were treated with the extracts before they were infected. Pre-treatment with *S. nigra* flowers was more protective than pre-treatment with *S. nigra* leaf extracts. However, pre-incubation of DENV-2 with either leaves or flowers, before infection, was the most effective way to protect cell monolayers (Figure 2).

These results were confirmed by assessment of DENV-2 NS-1 protein. Figure 3 shows the relative amount of NS-1 protein, expressed as O.D values, in the supernatants of both BHK-21 (empty bars) and VERO cells (filled bars).

To further evaluate the anti-viral effect of *S. nigra* extracts, the presence of intracellular DENV-2 viral particles was assessed by indirect immunofluorescence, using an anti-DENV envelope protein antibody and a fluorochrome-labeled secondary antibody. Results were observed through confocal microscopy. Fig 4 shows the mean fluorescence intensity (mean ± standard deviation) of three independent experiments. The relative amount of intracellular DENV-2 particles in cells that were treated with the mixture of DENV-2 with flowers or leaves extract was statistically lower than in cells treated with DENV-2 particles only (p < 0.001).

The results here presented show that *S. nigra* leaf and flower methanolic extracts have anti-DENV-2 properties. Further studies are required to understand the mechanisms underlying the antiviral activity of *S. nigra* extracts.
Figure 1. Viability of cells exposed to *Sambucus nigra* methanolic extracts. Cell viability was assessed in BHK-21, and VERO cells exposed to different concentrations of *S. nigra* flower and leaf methanolic extracts, by using the Alamar Blue assay. Relative fluorescence units for cells cultured in medium alone were considered as 100% viability. A negative correlation between extract concentration and cell viability was observed. At a concentration of 400 µg/mL, there was a cell viability of 60-80%.

Figure 2. Pre-incubation of DENV-2 with *S. nigra* leaf and flower methanolic extract diminishes DENV-2-mediated cytopathic effect. BHK-21 cells were kept in medium alone, infected with DENV-2 virus, treated with methanolic extracts from leaves or flowers at a 400 µg/ml final concentration, before DENV-2, after DENV-2, or with a mixture of DENV-2 plus *S. nigra* extracts. The highest anti-viral effect was observed when DENV-2 was pre-incubated with the methanolic extracts before addition to cell cultures.
required to isolate and characterize these compounds and to elucidate the precise mechanism of their anti-DENV-2 action.

Discussion

S. nigra was selected as a possible source of anti-DENV compounds based on its ethnopharmacological characteristics and known antiviral activity [23-25]. Other studies have addressed the anti-DENV activity of plant-derived compounds [26]. Although *S. nigra* has shown to have antiviral properties [19], the leaves and flowers of this plant have not been evaluated against the dengue virus.

S. nigra (Sauco, Elder) is rich in phenolic acids, flavonoids, catechins, and proanthocyanidins [27] and these compounds have shown anti-cancer, immune-stimulating, anti-bacterial, anti-allergic, anti-tussive, bronchodilatory, and anti-viral properties [28].

Preliminary phytochemical analysis of *S. nigra* methanolic extracts showed that they contain alkaloids, flavonoids and a noticeable amount of coumarins. Besides, brine shrimp (*Artemia salina*)-based toxicity bioassays showed that the DL₅₀ for *S. nigra* leaf and flower extracts was higher than 1000 µg/mL (data not shown), all of which indicates a low toxicity, similar to that of methanolic extracts from other plants from northern Mexico, such as *Tecomastans*, *Acacia farnesiana*, *Euphorbia antisiphylitica*, and *Fouquieria splenden* [29].

In this study, cell viability of BHK-21 and VERO treated with *S. nigra* methanolic extracts was evaluated and, based on the results, a concentration of 400 µg/mL was used for all further biological assays because, at this concentration, cell viability was between 60% and 80% (Figs. 1). As a reference, it has been shown that treatment with 1200 µg of *S. nigra* leaves/kg of body weight has anti-depressant activity [30], and that 1000 µg/mL of elderberry flavonoids totally inhibit H1N1 infection in vitro [31].

DENV-2-induced cytopathic effect was evaluated on BHK-21 cells to determine the antiviral activity of *S. nigra* leaf and flower methanolic extracts; both of which proved to be protective against DENV-2, at a concentration of 400 µg/mL (Figure 2). These results are similar to those showing that *S. nigra* elderberry fruit-derived compounds have anti-human influenza A (H1N1) activity at a concentration of 252 ± 34 µg/mL [31].

The anti-viral effect of *S. nigra* has also been documented for an elder flowers infusion, which has activity against influenza and herpes simplex viruses [32], and *S. nigra*-derived flavonoids prevent H1N1 infection in vitro [31].

S. nigra methanolic extracts were evaluated in relation to the time at which they were added to the cell cultures. The maximum effect was achieved when DENV-2 was pre-incubated with the extracts for 1 h and then added to the cell cultures (Figure 2). This result was further confirmed by analyzing the synthesis of NS-1 protein (Figure 3), and the extent of intracellular DENV-2 (Figure 4). Similar results were reported by Ocaresion, et al. These authors found a reduced DENV plaque formation when DENV was incubated with *Lippia alba* or *Lippia citriodora* oil, before adsorption on cells, and they did not observe a viral inhibitory effect by addition of the oils after virus adsorption [26].

Acknowledgment

We thank Dr. F. Javier Sánchez-García for critical review of the manuscript.

Competing interest

The authors declare no conflict of interests.

Funding information

This work was financed by SIP20170708 granted to MMB Moreno-Altimirano. I. Castillo-Maldonado was the recipient of a CONACyT 312488 PhD Scholarship y Fondo para promover el desarrollo de ciencia y tecnología, COEcyT-Gobierno del estado de Coahuila (COAH-2011-C07-C31).