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Abstract
Diabetes mellitus remains as a pandemic disease, associated to progressive and irreversible complications including lower extremity ulcerations, derived from a 
predisposition to ischemia, neuropathy and an intrinsic wound healing failure. The molecular operators supporting wound chronicity remain elusive, but a local deficit 
of growth factors is invoked as a common cause for proliferative arrest, apoptosis, and cells senescence. The prodegradative environment of these lesions contributes to 
reduce growth factors availability and receptors’ physiology. The introduction of growth factors in the clinical arena was precocious since critical pieces of chronicity 
pathophysiology had not been identified. The topical administration of these agents failed by the effect of local proteolysis, narrow bioavailability window, inadequate 
diffusion, and a harsh polymicrobial biofilm. To circumvent these pharmacodynamic limitations, we envisioned an intra-ulcer infiltrative delivery route for epidermal 
growth factor (EGF), based on the rationale derived from experimental evidences. The clinical development program with this procedure has comprised from a proof-
of-concept to post-marketing studies in poor-prognosis, ischemic, neuropathic, and neuroischemic wounds, involving more than 300 000 patients along 20 years. 
Pharmacovigilance studies demonstrated that infiltrated EGF is therapeutically effective and safe to circumvent the limitations of the classic topical administration. 
This pharmacological intervention has remained as an adjuvant therapy to conventional treatments and wound care protocols. Generation of EGF nanovesicles is 
envisioned as a promising future direction to trigger the re-epithelialization of stagnant, non-resurfaced diabetic wounds upon topical administration. 
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Introduction
Diabetic foot ulcer (DFU) is an example of chronic complex wound, 

demographically approaching to pandemic proportions, and still 
remaining as an unmet medical need [1]. Despite decades of research 
efforts and resources investments, diabetic population contributes 
to 80% of all non-traumatic lower extremity amputation around the 
world, leading to disability, social exclusion, and early mortality [2,3]. 
Diabetic patients exhibit a failure in their healing mechanism as skin 
cells are severely affected by the toxic effects of an abnormal glucose 
burden and adjacent biochemical derivatives [4-6]. Thus, diabetic 
wounds are transversed by numerous limiting factors that impair the 
ordered progression of overlapping cellular and molecular healing 
events. In this milieu converge and synergize a prolonged inflammatory 
reactivity, an excessive production of proteolytic enzymes, an 
uncontrolled spillover of free radicals, a deficiency of fibroangiogenic 
growth factors (GFs), a reduction in stem cells recruitment, and an 
increased number of senescent cells [7-10].  Ultimately, these factors 
pave the way for the onset of the chronicity phenotype, clinically 
expressed as a torpid granulation response, abnormal angiogenesis, 
reduced contraction rate, and stagnant re-epithelialization [8,11,12]. 

The sequential discovery of GFs at the beginning of the 60’s and 
their biological capability to enhance cells proliferation, migration, 

and to circumvent cells cycle arrest [13,14], founded the rationale 
for their introduction to treat a variety of acute and chronic wounds. 
During the 80’s and the 90’s, a myriad of enlightening articles appeared 
describing the beneficial effects of topically administered GFs to 
different experimental biomodels of skin wounds [15-25]. Nonetheless, 
the clinical and molecular complexity of a human chronic wound is 
yet far to be recapitulated in an animal model [26-28]. At the times of 
GFs hyperenthusiasm, there was an incomplete understanding of the 
molecular basis supporting tissue repair, and particularly of its failure. 
Elemental concepts for chronic wound management had not yet come 
to light. For example, TIME (tissue, infection/inflammation, moisture 
balance, and edge of wound) was first implemented at the early 2000’s, 
as an attempt to offer a framework for a structured and systematic 



Berlanga-Acosta J (2022) A narrative review on Epidermal Growth Factor (EGF) intralesional infiltrations for diabetic complex wounds: The rational of an innovative 
delivery route

 Volume 7: 2-9Vascul Dis Ther, 2022             doi: 10.15761/VDT.1000191

approach to chronic wound bed preparation [29-31]. Of note, however, 
TIME principles are only a part of the systematic and complete 
evaluation of each patient at every wound assessment, which was later 
acknowledged [29-31].  More advanced studies suggested that the use 
of GFs was somewhat precipitated, as subsequent findings showed that 
chronic wound milieu may impair the response to GFs, by preventing 
the binding and subsequent activation of the receptors for transducing 
the signal. It was the case of the down-regulation of epidermal growth 
factor (EGF), platelet-derived growth factor (PDGF), and transforming 
growth factor beta (TGF-β) receptors autophosphorylation, and 
downstream signaling in diabetic and venous ulcers [32-34]. 

Since Regranex (PDGF-BB isoform) approval by the USA Food and 
Drug Administration (FDA) in 1997, no other GF has been approved 
for DFU treatment. Regranex progress was additionally shadowed, 
when in 2008 the FDA included a “black box warning” of increased 
mortality rates secondary to malignancy in patients after treatment 
with three or more vials (http://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/2008/ucm116909.htm). 

Although during the past 20 years there was an increasing 
amount of novel, basic science-based approaches and developments 
that include wound dressings, living cells equivalents, and smart GF 
formulations for an efficient local delivery; some of these approaches 
still need clinical validation and others vanished along the way due to 
limited therapeutic impact [35-38]. 

The interventional procedure based on the infiltrative delivery 
of EGF directly into the bed and contours of diabetic complex, high-
grade, neuropathic and ischemic lower extremity wounds, including 
both ulcers, and stagnant amputation residual bases; emerged and 
consolidated as a successful alternative to circumvent the limitations 
of the topical application route [39]. This innovation pursued the 
efficacious intra-tissue delivery of a stabilized and integral molecule 
with proven tissue repair-enhancing effects. This EGF injectable 
formulation is not the “standalone” within the medical resources 
for complex diabetic wounds. Its polyvalent effects on cellular 
populations are largely integrated and supported by the conventional 
pharmacological interventions, and medical management protocols 
for this pathology.  

Twenty years of medical practice has shown that despite the 
complexity of the repair response, the appropriate delivery of the target 
GF may restore the “acute healing phenotype” of a hard-to-heal wound. 

This narrative review describes the line of thoughts and 
fundamentals that encouraged us to foster the hypothesis that by 
simply injecting EGF down into the lesion bed, would translate in 
unprecedented clinical outcomes. Our views are largely substantiated 
by the retrospective analysis of a group of classic articles from the 80’s 
and 90’s, which were fundamental to understand the conundrum of 
GFs molecular pharmacology into an ulcer bed. 

Overview of diabetic foot ulcers (DFU)
Diabetes mellitus is characterized by the onset and progression of 

multi-organs complications resulting from biochemical derangements 
and epigenetic factors, that ultimately translate into irreversible 
morphofunctional changes as a response to glucooxidative stress [5,40]. 
Of all these complications, DFUs are amongst the most common, 
frightened and debilitating [2], ultimately leading to amputation-
disability, and early mortality [2,41]. 

According to experts’ opinion, 19-34% of diabetic patients 
develops DFU, whereas the five years post-amputation mortality rate 

is greater than 70%, only preceded by lung cancer [42,43]. Accordingly, 
the International Working Group on Diabetic Foot has reported that a 
diabetic foot amputation is done every 20 seconds for over a million of 
patients every year [44]. 

The onset of DFU is driven by two major intrinsic predisposing 
factors: peripheral neuropathy (distal sensorimotor polyneuropathy) 
and peripheral arterial diseases [45-49]. Besides, diabetic individuals are 
also affected by cutaneous and mucosal infections given a dysregulation 
in primary surveillance, recognition, activation, and neutralization 
mechanisms, all processes of the innate immune response [50-52]. 

The glucotoxic environment and its distal effectors impair and 
disrupt the flow of overlapping healing phases, leading to a stagnant 
wound, chronically arrested in an unproductive inflammatory phase 
[11,53-55]. Diabetes predisposes to inflammation, which is more a 
condition than a transient reaction, while impairment in its resolution 
also perpetuates the inflammatory stage [56-58]. This model of chronic 
complex wound is therefore overloaded by a network of inflammatory 
cytokines, an uncontrolled production of local proteases, cytotoxic 
reactive oxygen and nitrogen species, and a polymicrobial biofilm [59]. 
Mechanistically speaking, this phenotype seems to be driven by three 
major factors: precocious cellular senescence, proliferative arrest, and 
unscheduled apoptosis of granulation tissue-productive cells [5,57,60-64]. 

Several evidences demonstrate that the local deficit of GFs is, 
among other factors, responsible for these three proximal inducers of 
wound chronification in diabetes, and other types of chronic wounds 
[5,65-68]. Classic results support this notion: (1) decreased expression 
of GFs by chronic wound cells [36,67,69,70]; (2) decreased expression 
and reduced functionality of GFs receptors in diabetic ulcers fibroblasts 
[32]; (3) decreased responsiveness to GFs-induced proliferation by 
cultured fibroblasts in an ulcer-age dependent fashion [71-73]; (4) 
proliferative arrest, and onset of biochemical and morphological 
traits of senescence by chronic wounds fibroblasts [5,74-76]; and (5) 
failure to stimulate DNA synthesis and proliferative commitment of 
fibroblasts, keratinocytes, and vascular endothelial cells when exposed 
to chronic wounds fluid [77,78]. 

GFs intervention for problem wounds 
The primary attempts to administer GFs in chronic wounds were 

likely driven by the concept of “replacement therapy”, aiming to 
restore local wound cells biological competence, and ultimately resume 
the physiological healing trajectory [39]. Since a senescent phenotype 
depends on the downregulation of proliferation regulatory-positive 
genes (i.e., MYC, FOS, CDK2, and CCNs), ordinarily controlled 
by paracrine secretion of GFs [79,80], the early idea that locally 
administered GFs could reverse this arrest in wound cells, appeared 
thoughtfully justified [79-83].

GFs are defined as biologically active polypeptides that interact with 
specific cell surface receptors inducing DNA synthesis, cell division, 
migration, differentiation, survival, and phenotypic transition [84]. 
Most of these events are essential for the dynamic progression of the 
healing phases [66], and contribute to granulation tissue formation and 
contraction, organization of a novel angiogenic network, sustain re-
epithelialization, and ultimately remodeling of the scar [14,85]. Thus, 
each GF is endowed with more than one biological role along the healing 
process, which depends on the target cell and the time phase of the 
wound [86,87]. GFs are also ubiquitous ingredients in most epithelial 
and mesenchymal mammals tissues; not only controlling tissue healing 
events, but ensuring epithelial cells populations’ homeostatic turnover 
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and biological resilience [88]. In general terms, GFs have a major role 
in coordinating and integrating tissue physiology [89-92]. Several GFs 
are known to be involved in the wound healing process. These include 
PDGF, EGF, fibroblast growth factor, insulin-like growth factors 1 and 
2, vascular endothelial growth factor, TGF-β, and keratinocyte growth 
factor [70,93,94]. 

The history of GFs pharmacology, as an alternative to combat 
wound chronicity, has not progressed along a smooth road upon 
time. So far, PDGF in its pharmaceutical jelly presentation (Regranex, 
https://www.smith-nephew.com/professional/products/all-products/
regranex/), remains as the only GF approved by the FDA to be topically 
administered to low grade neuropathic DFU (https://www.fda.gov/
media/76010/download). To the best of our knowledge the first clinical 
intervention with a recombinant human GF dates back to 1989, when 
Brown and co-workers topically administered EGF to accelerate the 
epidermal regeneration of skin graft donor sites in burn patients [95]. 
Experimental studies at that time, however, began to emphasize that 
certain pharmacokinetic requisites had to be met, for an effective 
outcome with EGF topical administration [96]. The initial expectations 
about GFs topical application as “magic bullets” for accelerating 
resurfacing of at least partial thickness injuries [97], soon disappeared 
following two clinical studies. In a chronological sequence, Falanga 
failed to show a significant re-epithelialization of chronic venous 
ulcers upon topically administering EGF for a maximum of 10 weeks 
[98]. Subsequently, Cohen showed in a rigorously controlled study 
with healthy volunteers, that topical administration of EGF failed to 
enhance re-epithelialization of partial-thickness, dermatome-induced 
acute wounds [99]. These unexpected results warned about the need 
for additional research in GFs physiology and pharmacology, as in the 
understanding of the wound milieu biochemistry [98,100]. 

Thereafter, numerous investigations emphasized about the 
necessity of modifying wound local factors through wound bed 
preparation, in order to ensure an appropriate GFs pharmacodynamic 
response (for review see: [31]). Others claimed the need for GFs 
combinations as the optimal tool to restore the healing trajectory 
in chronic wounds [100,101]. The debut of GFs in the clinical arena 
seemed premature in relation to the basic science supporting its 
molecular pharmacology [102]. This statement is likely based on the 
observation by Jeff Davidson's group in 1985, which demonstrated 
that EGF wound healing enhancement was solely promoted under a 
prolonged, sustained, in situ slow release system [15]. The biological 
significance of a prolonged bioavailability of EGF and the ensued 
interaction with its receptor, were further validated when the GF was 
incorporated into multilamellar liposomes, which enhanced incisional 
wounds tensile strength over 200% as compared to controls [18]. 
Conclusively, according to Davidson’s group data, EGF could stimulate 
the mitogenic response in wound cells if the receptors were exposed/
stimulated for at least 8 to 12 hours [15].

These basic science results prompted the need to introduce novel 
local delivery systems for EGF, a polypeptide with three disulfide 
bonds, largely sensitive to proteolysis, and that required a prolonged 
half-life within the wound milieu to express its biological bounties. 
Thus, the topical application method employed so far appeared 
proved not to be an ideal delivery for chemically-sensitive polypeptide 
GFs. This represented a challenge, as it was known that even the 
acute wounds environment is harsh for locally applied proteins, 
and particularly because diabetic wounds milieu contains all the 
detrimental ingredients against GFs chemical stability, bioavailability, 
and ultimately therapeutic capability [103]. Although experimental 

studies at the early 90’s clearly showed the importance of formulating 
EGF with protease inhibitors, these combinations never progressed to 
a clinical trial [82,104-106]. 

EGF biological effects to counteract DFU chronicity 
EGF is perhaps the most widely studied GF in mammals biology, 

and we have upraised the hypothesis that this GF is biologically 
competent to largely counteract the molecular drivers of the chronicity 
phenotype [107,108]. Since the 60’s interpretation that its exogenous 
administration to mice, reprogrammed chronologically-specified skin 
cells mitogenic and differentiation events; EGF was applied to repair 
multiple forms of wounds in both peripheral and internal tissues 
[107,109,110]. Aside from the classic mitogenic, motogenic and 
cytoprotective actions during healing events [107], EGF biological 
spectrum involves a potential anti-senescent effect.  Experimental 
evidences postulate that EGF aborts cellular senescence programs 
[111,112]. In line with this, a groundbreaking study revealed that 
cell cultures depleted of EGF progress toward a senescent phenotype 
with elevated SA-β-gal activity, decreased proliferation, reduced Rb 
phosphorylation, and elevated p21 expression. These results advise 
that cultured cells may depend on EGF as a mechanism to escape from 
senescence and ensure proliferation, thus placing EGF as a central 
mediator in preserving mitogenic competence, and avoiding senescence 
[113,114]. Likewise, EGF showed to activate the expression of human 
telomerase reverse transcriptase in cultured cells, via Ets-2, a cancer-
specific transcription factor that appears to depend on EGF receptor 
(EGFR)-mediated Erk and Akt activation [115]. Experimental studies 
suggest that EGF enhances cell survival and tissue replenishment in 
otherwise lethal scenarios, by controlling oxidative stress and by 
mitigating cellular senescence [116-119]. 

Diabetes is associated to a particular deficit of circulating [120] 
and salivary levels of EGF [121], which synergizes with the glucotoxic 
environment to drive multicellular systems demise [122-126]. The 
early 90’s experiments, in which we examined the response to locally 
injected EGF to injured sciatic nerves in rats, became a turning point 
and paved the way to what was therapeutically achievable by an efficient 
delivery method. At the same time, this animal model itself somehow 
recapitulated the diabetic-like combination of neuropathy and tissues 
hypoxia. At the end, EGF local infiltration restored the neurological 
response, enhanced hind limbs soft tissues survival, and reduced 
the onset of plantar ulcers and toes necrosis [127]. We subsequently 
showed in a variety of pathological models that single or repeated 
EGF systemic injections or local infiltrations, stimulated “clear-cut” 
cytoprotective and proliferative responses, supporting the intrinsic 
ability of EGF at supraphysiological concentrations to promote tissue 
repair [107,128,129]. 

Evidences supporting EGF intralesional infiltration ra-
tionale 

Injecting EGF down into the base and contours of the wounds, 
including the dermo-epidermal junction, appears to: (1) ensure the 
direct delivery of the GF to the responsive cells, (2) reduce its local 
degradation, (3) jump over the diffusion limiting barriers from the 
wound surface to the deeper stratum, and (4) ensure EGF bioavailability 
for a prolonged interaction with the receptor in a deep layer cells. The 
immunohistochemical demonstration on the existence of a cellular 
distribution of EGFR and other cell proliferation regulators, along the 
longitudinal axis of neuropathic DFU granulation tissue bed, turned 
a crucial hint for the rationale of the local infiltration treatment. In 
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parallel, the finding contributed to explain why topical administration 
of semisolid formulations had failed.  As shown in Figure 1, EGFR is 
not detected on the wound surface cells layer, in contrast to deeper cells 
strata where it is intensely expressed. 

Three vertical sections (≈2-3mm length) are immunohistochemically 
distinguished in biopsies materials by immunolabeling with antibodies 
against prohibitin as a cell cycle negative regulator, cyclin D1 as a 
master switch controlling G1–S transition in response to growth factor 
stimulation. The active EGF-receptor phosphorylated in tyrosine 
1197 as a critical substrate for multiple physiological functions of the 
receptor is also shown. Prohibitin is far more abundant on the upper 
section corresponding to the most superficial stratum of the wound. 
Conversely, Cyclin D1 and EGFR Y-1197 appear marginally labeled.  It 
is noticeable that proliferative Cyclin D1 and the phosphorylated form 
of the EGFR are by large abundantly detected in bottom section – the 
deepest wound layer where no prohibitin is detected. 

Similarly, cyclin D1, the G1-S phase cell cycle promoter [131] is 
not expressed by wound superficial cells but in lower cells layers. On 
the contrary, the wound surface cells exhibit abundant expression 
of prohibitin, a well-known tumor suppressor and cell cycle arrest 
protein [132]. Other early studies of our group showed that 125I-EGF 
formulated in a semisolid vehicle, appeared to be rapidly cleared from 
the application site, probably by protease-driven cleavage and receptor-
mediated endocytosis. Mean residence time values suggested that over 
60% of the amount administered, may have disappeared as early as 
two hours after its administration [133]. This local pharmacokinetic 
modeling based on EGF topical administration, indicated that the 
receptors dynamics does not fulfill the requisite of prolonged receptor/
ligand interaction for wound cells proliferation [15]. Our rationale 
was also supported by the evidences offered by Cross and Roberts in 
1999, which showed that EGF only penetrated slightly into the upper 
granulating layers of the wound; with a subsequent exponential decline 
in solute concentration with tissue depth. This limited absorption 
kinetic also contributed to explain why topically administered GFs 
failed in the clinical scenario [134]. We enlarged the list of researchers 
[29,135,136] who showed the limited in-wound bioavailability of EGF 
due to the effect of locally secreted proteases. Of note, our finding 
derived from experimentally induced acute, controlled, full-thickness 
wounds in pigs under laboratory conditions. This suggested that 
proteases contained in the physiological exudate of clean, non-chronic 
wounds may also threaten EGF molecular integrity and stability [137].

It is likely that the most substantial support to our approach of 
intralesional EGF injection derived from a time-point immunoelectron 
microscopy kinetic study addressed to characterize the intracellular 

trafficking of the EGFR in ulcers-collected fibroblasts. This study 
showed that locally infiltrated EGF into Wagner’s 3 and 4 neuropathic 
ulcers resulted in (a) dramatic increase of the EGFR expression 
15 minutes after the EGF infiltration as compared prior to the 
intervention point, which indicated the induction of the receptor by 
the high-affinity ligand; (b) immediate endocytosis of the EGFR/ligand 
complex; (c) translocation and biodistribution to different cytoplasmic 
organelles from 15 minutes to 24 hours after the infiltration; (d) nuclear 
translocation of the receptor and its binding to DNA, which appeared 
to last up to 24 hours after the treatment; (e) a concomitant activation 
of the proliferating cell nuclear antigen (PCNA) (a cell cycle promoting 
protein) gene transcription, since a high expression of this protein 
was detected following EGF intervention, even 24 hours after the 
injection; (f) a significant and intriguing accumulation of the receptor 
in mitochondria which lasted for 24 hours after the infiltration; (g) 
significant accumulation of the receptor bound to collagen fibers 
within the extracellular matrix [138]. All these data endorse the EGF 
delivery procedure as an effective mean to stimulate the receptor for 
hours, indirectly promoting PCNA gene expression and consequently 
cell proliferation [138].

Clinical validation of EGF infiltration
The animal experiments carried out during the 90’s [107,128,129], 

supported the hypothesis to initiate in 2001 a pilot study with 29 
diabetic patients with high-grade (Wagner scale III and IV), poor-
prognostic, and comprising ischemic lower limb wounds (ulcers and 
non-healing amputation residual bases). In this study, recombinant 
human EGF was intralesionally infiltrated into the bottom and contours 
of the wounds three times a week, along with sharp debridement, and 
other conventional medical interventions [139]. The fact that from 
this initial intervention 17 subjects were healed and prevented from 
amputation; paved the way for subsequent clinical trials [140-142], the 
development of an injectable lyophilized formulation, and the onset 
of a nationwide program that included two pharmacovigilance studies 
with more than 2000 patients [143,144]. Clear glass data confirmed 
the clinical usefulness of this delivery route to trigger and sustain the 
healing process. In terms of figures, it was shown that infiltrated EGF 
elicited 75% full granulation response, 61% of wound closure, and 71% 
reduction of amputation-relative risk, as well as positive benefit-risk 
balance. Of major clinical and social relevance is that recurrences were 
reported as an exceptional event (approximately 5%) upon a 12-month 
follow-up period [143,144] which had been anticipated since the proof-
of-concept trial. This is a meaningful advantage of the EGF intralesional 
infiltration. Recent investigations disclose that roughly 40% of patients 
have a recurrence within 1 year after ulcer healing, almost 60% within 
3 years, and 65% within 5 years [42]. Other international groups, who 
have introduced EGF intralesional infiltration in the daily practice, 
converge to report that EGF infiltration triggers an exceptional healing 
response with low amputation rates [145-147]. 

As just mentioned, the outcomes observed in the initial study in 
2001 urged the need for the development of a high-standard injectable 
pharmaceutical formulation, which required to be a lyophilized form, 
given that EGF is labile in aqueous systems [148]. At the end of a series 
of pre-formulation studies, the freeze-dried formulation proved to be 
an appropriate technical solution for stabilizing and preserving EGF 
for the intralesional delivery route [149]. 

Finally, we have also demonstrated in two independent and 
extemporaneous studies that the intralesional administration of 
EGF has a systemic translation with beneficial effects (Figure 2).  

Figure 1. Cell proliferation cycle controllers in granulation tissue of neuropathic ulcers
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Following 3-4 weeks of treatment, there was a systemic reduction of 
oxidative stress and a concomitant recovery of antioxidant reserve 
markers. The decrease in circulating levels of matrix metalloproteases 
and their tissue inhibitors, as the systemic attenuation of several 
acute phase pro-inflammatory and innate immunity reactants were 
also evidenced. Interestingly, local EGF infiltration was also shown 
to significantly reduce circulating levels of pro-apoptotic inducers 
and the levels of advanced glycation end products [150,151].  
Chronic and complex acute wounds may act as a pro-inflammatory 
and a pro-oxidative superimposed organ that establish a dynamic 
bidirectional reciprocity circuit with the host.  Nine local infiltrations 
of EGF into the wounds, accounted for a reduction in systemic pro-
inflammatory biomarkers as erythrosedimentation rate, C-reactive 
protein, interleukin-6, soluble FAS, and macrophage inflammatory 
protein 1-alpha.  EGF infiltrative therapy also decreased redox and 
nitrosilative stress biomarkers, while increased the circulating levels of 
the soluble receptor for the advanced glycation end-products. Behind 
the healing success achieved upon EGF infiltration, there is an extensive 
profile of pharmacodynamic effects, given by the systemic restoration 
of multiple internal metabolites and functions and interrogatively 
facilitate the resumption of a physiologic healing trajectory.  

Future directions 
Wound care and management is an age-old practice. The two most 

traditional approaches for wound healing entail the topical (superficial) 
administration of active healing ingredients, and the occlusion of the 
wound by dressings [152]. Contemporary wound healing science has 
embraced nanomedicine in the form of nanoparticles, scaffolds, and 
composites that, to a significant extent, have been able to assist the 
repair process [153]. Biomaterials with controlled-release of signaling 
molecules as growth factors have turned a promising method for 
diabetic wound healing [154]. Dr. Nora Ventosa’s laboratory at the 
Institute of Materials Science of Barcelona (ICMAB-CSIC, Spain) 
has developed non-liposomal nanovesicles, named quatsomes, 
composed of ionic surfactants and cholesterol derivatives [155-158]. 
Quatsomes formulations are stable upon dilution, and have high 
vesicle-to-vesicle homogeneity in terms of size, morphology and 
chemical composition. These innovative nanovesicles can be used 
for the nanoformulation of therapeutically active small synthetic 
molecules or biomolecules [159,160]. Interestingly, quatsomes 
are prepared by a one-step eco-efficient process, named DELOS-
SUSP [161,162], and have built-in anti-microbial and anti-biofilm 

properties which can help to protect skin from infections [163]. 
Overall, this is a promising platform for nanomedicine applications.  
The collaborative work among our groups has yielded an innovative 
nanotherapy for diabetic wound healing based on EGF-loaded 
quatsomes (EGF@Quatsomes). These nanoconjugates exhibited (1) 
extraordinary colloidal stability, (2) increased EGF mitogenic activity as 
compared to free EGF, (3) high resistance to proteolytic degradation of 
EGF, (4) prolonged cutaneous retention of EGF, and (5) antimicrobial 
activity against gram-positive bacteria, yeast, and fungi; all of which may 
translate in a satisfactory availability of bioactive EGF within the wound 
milieu and ultimately a broader pharmacodynamics [164]. Our small 
pilot clinical assessment of the EGF@Quatsomes topical administration 
(3 times/week) yielded an encouraging outcome: stagnantly granulated, 
non-reepithelialized diabetic wounds of both ischemic and neuropathic 
nature with an evolution time from 5–60 months; were triggered a 
steady and progressive epithelial response with complete resurfacing in 
approximately 90 days. Of note, immunohistochemical studies based 
on small granulation tissue biopsies, indicated the activation of the 
EGF receptor signaling axis and the downstream transducing pathways 
involved in cellular proliferation and survival [164]. Additional basic 
science and pharmaceutical development studies are in progress in 
pursuant for a definitive clinical positioning. 

Concluding remarks 
Skin fibroblasts, vascular cells and keratinocytes become 

biochemically and epigenetically imprinted with the particular 
“diabetes seal”. Not less significant is the damage induced by 
hyperglycemia and its associate by-products on the mesenchymal 
stem cell niches. Thus, skin cells of diabetic individuals exhibit an 
abnormal behavior and a short replicative life span, displaying a 
senescent phenotype even under ideal in vitro culture conditions. This 
replicative arrest that remains in the cellular memory is one of the 
major drivers of wound chronicity. Diabetic wound is conceptually an 
additional source of circulating toxic, pro-inflammatory and catabolic 
mediators that establish a self-perpetuating loop. More recently, new 
pathological elements have arisen with the recent identification and 
characterization of dozens of miRNA released from the diabetic wound 
realm. The microenvironment of these wounds has proved to be hostile 
for GFs and their receptors in terms of physicochemical integrity and 
physiology. Despite the initial promise for optimal wound management 
and despite long years of research efforts, GFs have not fully integrated 
the pharmacological armamentarium. For the particular case of EGF, 
it was the first in line used by topical administration in acute and 
chronic wounds. Unfortunately, the results were either controversial 
or neutral in both basic and clinical studies. Despite these outcomes, 
there is no question about its intrinsic biological potency in mitogenic 
commitment for most epithelial and mesenchymal-derived cells. The 
experiments based on the local infiltration of EGF in rats injured hind 
limbs, were crucial in showing the big gap existing between the topical 
and the infiltrative delivery routes in terms of a clear-cut tissue healing 
response. This example of translational science has contributed to safely 
heal more than 300 000 patients, most of them with low recurrence 
rates, reductions of amputations, and prolonged survival. An incoming 
generation of EGF nanovesicles for topical use is already designed for 
reluctant-to-reepithelialize granulated wounds.   
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