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Abstract
Background: Roles of nitric oxide (NO) and endothelin-1 (ET-1) in the local regulation of blood flow under physiological conditions are important and well known, 
while data on their effects and interactions in conditions of hyperbaric hyperoxia is still insufficient.

Methods: This was a prospective observational study which included patients who underwent HBOT in accordance with existing therapeutic protocol for PAD 
during time period of six months, between January and July of 2016. Clinical stage of PAD according to Fontain was taken into account, as well as risk factors, 
demographic, anthropometric and clinical characteristics of studied patients. 

Results: The study included 64 patients with a mean age (± Sd) 60.2 ± 12.7 years, of whom 28 were female. Patients’ NO serum levels generally increased after HBOT 
(NObefore HBOT 21.6 ± 9.2 vs. NOafter HBOT 23.5 ± 10.6 (p=0.2)), except in patients with stadium IV of PAD who had lower serum NO levels after HBOT (NObefore HBOT 
23.6 ± 11.5 vs NOafter HBOT 20.4 ± 7.0 (p=0.4)), although these differences were not statistically signifficant. On the contrary, in all studied patients ET-1 level increased 
signifficantly after HBOT (ET-1before HBOT 4.2 ± 11.6 vs. ET-1after 18.3 ± 21.0 (p<0.001)) including patients with stadium IV of PAD. 

Conclusion: Treatment of PAD using HBOT leads to the predominance of vasoconstrictor effects probably caused by elevation of serum ET-1 concentrations, while 
other factors such as exposure time to hyperbaric conditions, activation of antioxidant molecules, and the influx of other interfering substances must be considered in 
interpreting the effects of NO molecules.
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Introduction
Tissues regulate blood flow in regards to its own metabolic needs, 

and this regulation is in short term done by changing the diammeter 
of small blood levels while in long term it depends on local conditions 
and adaptation mechanisms [1,2]. Endothelial cells of small arteria 
and arterioles wall produce vasoactive substances, some of which are 
potent vasodilatators – like nitric oxide (NO) and others are potent 
vasoconstrictors – such as endothelin - (ET-1) [3]. 

NO is also considered responsible for platelet aggregation, non-
adrenergic-non-cholinergic neurotransmission and cytotoxic reactions 
[4], while ET-1 has a 100-fold stronger vasoconstrictor effect than 
adrenaline and may exert effects on muscle contractility, secretory 
activity, cellular transport management, gene expression, cell growth 
and proliferation as well as modulation of the immune response [5,6]. 

Homeostasis of vasoactive substances is impaired in many diseases; 
one of them is peripheral arterial disease (PAD) where HBOT is 
used as one of possible treatment modalities. The effects of HBOT 
on suppression of gas gangrene toxin production, on NK cell activity, 
leukocyte adhesion, vasoconstrictor effects in normal blood vessels 
under hyperbaric conditions, on fibroblast production, osteoclast 
activity, modeling of immunosuppressive properties and diminished 
interleukin 1 are well known [7]. Oxygen availability is known to affect 
vascular tone control as it leads to changes in the production and 

sensitivity of blood vessel walls with various vasoactive substances such 
as arachidonic acid metabolites and NO [8-14].

The mechanisms by which HBOT exerts positive effects cannot 
be explained solely by the compensation of oxygen deficiency [15,16]. 
Studies have shown that inhalation of oxygen at 2 bars does not act 
vasoconstrictively until the lack of oxygen in the tissues is corrected. 
HBOT increases oxygen supply to hypoxia-compromised tissues and 
cells, reduces the build-up of lactic acid and other metabolites in 
the muscle and helps developing of collateral circulation. If this type 
of therapy is combined with vasodilators, prostaglandin infusions, 
sympathetic denervation, surgical revascularization procedures and 
rehabilitation, excellent results can be achieved [17].

Most PAD patients have impaired vascular function including 
vascular regulation. So far, there have been various controversies in 
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via individual masks and one treatment lasted 60 minutes (10 minutes 
to achieve compression, treatment under achieved conditions for 40 
minutes and 10 minutes to decompress). Each of these patients were 
submitted to 10 therapeutic procedures.

Blood sampling

Blood for analysis was obtained by venipuncture of the cubital vein. 
All principles of asepsis were followed  during blood sampling. A total 
sample of 4 milliliters of blood was taken from each patient; the first 
sample of 2 milliliters was taken 15 minutes before the first treatment 
in the hyperbaric chamber, and the second sample of 2 milliliters was 
taken 5 minutes after the completion of the tenth treatment.

NO sereum levels measurement 

NO levels were determined by spectrophotometry using the Griess 
reagens (Griess method). Immediately after sampling, the samples 
were treated with 30% ZnSO4 to deproteinize the blood and release 
hemoglobin bounded NO3

2-. After adding 0.05 milliliters of 30% ZnSO4 
to one milliliter of heparinized blood diluted with 0.9% NaCl in ratio 
1:1, it was centrifuged for 10 minutes, and separated supernatants were 
stored in the freezer at -80 °C. NO concentration was measured using 
the classical colorimetric Griess reaction, the conversion of NO3

2- to 
NO2

2- by elemental zinc followed by measuring NO2
2- concentration. 

8 milligrams of elemental zinc powder suspended in 0.4 milliliters of 
purified water was added to 1 milliliter of deproteinized blood. 0.032 
ml of 5% acetic acid and purified water of up to 2 milliliters were then 
added to the sample and stirred using electromagnetic vibrator for 
5 minutes at room temperature. After that, sample was centrifuged 
for 2.5 minutes at 700 g. 1 ml of supernatant was than aded to 1 ml 
of freshly prepared Griess reagens (mixture of equal parts of 0.1% 
solution of naphthylethylenediamine dichlond in purified water and 
1% sulfanilamide in 5% H3PO4 solution which are stirred and left 
to cool for 12 hours before use). After stirring for 10 minutes on a 
vibrator at room temperature, light absorption (optical density) was 
measured at 546 nm using a spectrophotometer. The concentration of 
NO (in mmol/L) was determined from a standard curve with known 
concentrations of NaNO2 (from 1.56-100 mmol/L). Purified water with 
Griess reagens was used as a blank determination. The mean value of 
three consecutive measurement performed on the same sample was 
taken as the definitive level of NO.

ET-1 serum level measurement

Serum was separated from the whole blood using water bath at 
37 °C, after which it frozen at -80 °C until analysis. Determination of 
serum ET-1 levels was performed with EIA methodology based on 
an immunometric assay, the so-called. “Sandwich technique” using 
the Endothelin-1 ELISA kit - IBL Hamburg, Germany. A 96-well tile 
is required to perform this technique. Within each recess (pond) are 
binding antibodies fixed to the pond wall. These antibodies have a 
specific affinity for ET-1 molecules. After the addition of the sample 
to each individual pond, a binding reaction of all ET-1 molecules 
present in the test sample occurs with binding antibodies fixed to the 
pond wall. After the sample had been added to the ponds, a solution of 
acetylcholinesterase: Fab conjugate (antibodies) was added. The role of 
Fab conjugates is to bind ET-1 molecules, but for the second epitope 
(on the opposite side) relative to the “binding” antibodies. This creates 
complexes made of binding antibodies, ET-1 and acetylcholinesterase: 
Fab conjugates or sandwiches. As sandwiches are now firmly attached 
to the base of each pond, the rest of the contents are washed out with 
buffer fluid. After washing, Ellmans reagens was added. The role of 

the knowledge and findings related to effects of NO. NO is known 
to have vasodilatory effects, it increases angiogenesis and protect 
endothelial cells from apoptosis. Besides, NO inhibits the migration 
and proliferation of smooth muscle vascular cells and reduces platelet 
activation, while NO donors increase the amount of collagen in 
fibroblasts by promoting normal wound healing [18-21].

Experimental [22] and clinical data suggest that intermittent 
HBOT [23] decreases tissue edema, increases NO synthesis, changes 
vascular reactivity to stimuli [24] and inhibits neuroinflamatory factors 
expression and apoptotic pathways [25]. Although NO is considered 
responsible for positive effects of HBOT, other vasoactive substances 
such as ET-1 should not be overlooked, since some experimental data 
show changes in ET-1 levels under hyperbaric conditions [26].

Materials and methods 
Study design and setting 

This was a prospective observational study which included patients 
who underwent HBOT in accordance with current therapeutic 
protocol for PAD during time period of six months, between january 
and july of 2016 at the Institute of Physical Medicine and Rehabilitation 
“Dr. Miroslav Zotovic” Banja Luka - Centre for hyperbaric medicine 
and chronic wound treatment. The study was approved by the Ethics 
Committee of the Institute for the Physical Medicine and Rehabilitation 
“dr Miroslav Zotovic” Banja Luka. The informed consent was signed 
by the patient or authorised representative of the patient. Analysis of 
NO and ET-1 serum levels were performed in two different certified 
laboratories. SH animals were divided in subgroups: 

Patients

The Centre for Hyperbaric Medicine and Chronic Wound 
Treatment is the only centre in the Republic of Srpska that uses the 
method of HBOT in the treatment of PAD and covers the territory 
of about 1.3 million inhabitants. Inclusion criteria for this study 
were age above 20 years, signed consent to participate in the study 
(informed consent), documented diagnosis of PAD including the stage 
of the disease according to Fontain [27], physician recommendation 
for HBOT and cardiologist approval for HBOT. Exclusion criteria 
were existence of upper respiratory tract infection, emphysema 
with hypercapnia, febrile condition, spontaneous pneumothorax in 
medical history, previous reconstructive operations of the middle ear, 
previous operations on the chest, confirmed changes in radiography 
or CT of the chest, viral infections and claustrophobia.  According to 
Fontain’s classification of PAD, the study included patients with stage II 
(claudicatio intermitens as the dominant symptom), III (resting pain as 
the dominant symptom), and IV (the predominant finding is irreversible 
ischemia with necrosis and gangrene). Prior to inclusion in the study, 
each patient was interviewed and demographic data (gender and age) 
and anthropometric data (height and weight from which BMI was 
calculated) were recorded for patients who provided written consent, 
documented medical history and current comorbidities (mandatory for 
diabetes mellitus), current therapy (mandatory for acetylsalicylic acid 
and insulin), and smoking status. 

HBOT treatment protocol

HBOT of studied patients was provided using modern multiseat 
hyperbaric chamber type Haux-Starmed 2500. The conditions to which 
all subjects were subjected in accordance to therapeutic protocol were 
to achieve a maximum of 2.2 atm, ie 1.2 bar (corresponds to a dive 
at 10 meters depth) at FiO2 1.0 (100% O2). Patients inhaled oxygen 
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this reagens is to change the color (to yellow) in reaction with the Fab 
conjugate. The concentration of ET-1 is determined messuring change 
in color intensity. This measurement was performed electronically 
using an ELISA reader (Elx 800 Universal Microplate Reader Biotek 
Instruments, INC) at a wavelength of 405 nm. An automatic ELISA 
washer from the same manufacturer was used to rinse the plate. The 
standard curve was obtained from known ET-1 activities within 
the kit. Blinds were tested using 2 ponds to which no Fab conjugate 
was added, while the rest of the procedure was the same. The values   
obtained are expressed in pg/ml. Since 8 standard probes were used to 
obtain the standard curve, with decreasing concentrations in the S1 - S8 
standards, the S1se chamber contained a concentration of about 250 
pg / ml, in the next 125 pg / ml, and further 62.5 pg / ml, 26.3 pg / ml 
and in each of the following two times less than in the previous one, 
while the S8 sample contained only diluted human plasma from the 
kit itself, with the manufacturer’s guarantee that the concentration of 
ET-1 was less than 1.5 pg / ml. Thus, for the adsorbents obtained below 
the adsorbance values   for standard S8, we can interpret the serum 
ET-1 levels of subjects below 1.5 pg/ml corresponding to the expected 
(normal) values   in potentially healthy subjects. For these adsorption 
findings, a result of 1.5 pg/ml was added in the table. The mean value 
of three consecutive measurement performed on the same sample was 
taken as the definitive level of ET-1.

Statistical analysis

The obtained results were stored in table (MS Excel 2013), and 
the SPSS  software (IBM Corp. Released 2012. IBM SPSS Statistics for 
Windows, Version 21.0. Armonk, NY: IBM Corp.) was used for all 
statistical analysis. Data were processed by standard statistical methods, 
both from the domain of descriptive statistics (basic descriptive 
measures: mean, mode, median, standard deviation) and from the area 
of statistical inference (Student’s t test for small independent samples, 
Student’s t test for small dependent samples, χ2 test, ANOVA test). 
Values of p <0.05 were considered statistically significant.

Results 
During the study period, total of 64 patients (36 men and 28 

women) treated at the Center for Hyperbaric Oxygen Therapy and 

N (%)
Sex ♂ 36(56.3)

Age 20-39 6(9.4)
Age 40-59 22(34.4)
Age 60-69 25(39)
Age >70 11(17.2)

Stage II PAD 30(46.9)
Stage III PAD 21 (32.8)
Stage IV PAD 13(28.3)

Smokers 15(23)
Diabetes 52(81)

Acetilsalicil acid 17(27)
Insulin 35(55)

Body mass index >24.9 44(68.7)

Table 1. Descriptive parameters of studied patients

NObefore (mean ± Sd) 
(mmol/l)

NOafter 
(mean ± Sd) (mmol/l) p* ET-1before

(mean ± Sd) (pg/ml)
ET-1after

(mean ± Sd) (pg/ml) P*

All patients 21.6 ± 9.2 23.5 ± 10.6 0.2 4.2 ± 11.6 18.3 ± 21.0 <0.001
Sex ♂ 22.3 ± 8.9 24.5 ± 9.0 0.2 1.5 ± 0.0 14.0 ± 3.1 <0.001
Sex ♀ 21.1 ± 9.5 22.7 ± 11.7 0.5 6.5 ± 2.6 21.9 ± 27.9 <0.001

Stage II (Fontain) 21.9 ± 9.6 26.2 ± 12.1 0.04 6.3 ±15.9 20.8 ± 29.5 <0.001
Stage III (Fontain) 20.0 ± 6.9 21.6 ± 9.4 0.5 1.5 ± 0.0 14.0 ± 3.4 <0.001
Stage IV (Fontain) 23.5 ± 11.5 20.4 ± 7.0 0.4 3.8 ± 8.2 19.6 ± 11.9 <0.001

Age ≤ 65 21.0 ± 9.0 23.9 ± 10.7 0.085 4.5 ± 13.6 19.2 ± 26.0 <0.001
Age > 65 22.6 ± 9.6 22.9 ± 10.6 0.904 3.7 ± 7.7 17.0 ± 8.9 <0.001

Smoker/Yes 19.6 ± 7.1 21.5 ± 7.7 0.424 8.9 ± 21.7 29.2 ± 41.0 0.002
Smoker/No 22.2 ± 9.7 24.1 ± 11.3 0.293 2.8 ± 5.4 15.1 ± 6.4 <0.001
Insulin/Yes 29.9 ± 8.6 23.5 ± 9.6 0.195 2.6 ± 4.8 14.7 ± 4.7 <0.001
Insulin/No 22.5 ± 10.0 23.6 ± 11.8 0.637 6.2 ± 16.3 22.6 ± 30.5 <0.001

Acetilsalicilacid/Yes 20.4 ± 6.8 23.90 ± 11.65 0.207 3.0 ± 6.1 16.6 ± 8.6 <0.001
Acetilsalicilacid/No 22.1 ± 10.0 23.4 ± 10.3 0.456 4.7 ± 13.0 18.9 ± 24.0 <0.001

Diabetes/Yes 20.9 ± 8.0 23.1 ± 9.9 0.17 2.8 ± 5.6 15.5 ± 7.5 <0.001
Diabetes/No 24.8 ± 13.2 25.5 ± 13.4 0.863 10.3 ± 23.8 30.4 ± 45.5 0.009
BMI ≥ 24.9 20.6 ± 7.3 23.1 ± 10.2 0.105 4.2 ± 12.8 18.9 ± 24.3 <0.001
BMI < 24.9 23.92 ± 12.37 24.7 ± 11.5 0.814 4.2 ± 8.4 17.1 ± 11.1 <0.001

*Student's t-test

Table 2. Mean concetrations of NO and ET-1 (± SD) before and after HBOT

Treatment for Chronic Wounds were included using previously defined 
criteria. Other descriptives are shown in Table 1.

Mean concentrations of NO and ET-1 (± SD) in selected groups 
of patients before and after HBOT and statistical analysis results are 
shown in Table 2.

Analyzing baseline NO concentrations (before HBOT), we found 
significantly higher NO serum concentrations in the age group of 20-29 
years compared to other age groups, but we did not comment on these 
results because the sample was too small.  Besides this, lower baseline 
concentrations NO were found in diabetic compared to non-diabetic 
patients and non-smokers but difference was not statistically significant.

Analyzing baseline ET-1 concentrations, we found lower serum 
concentrations in males compared to females as in non-smokers versus 
smokers, in those receiving insulin versus in non-insulin recipients - 
but without statistical significance. We found significantly higher serum 
levels of ET-1 in diabetic patients compared to non/diabetic patients.

Discussion and Conclusion
In our study, we showed the prevalence of vasoconstrictor 

substances (ET-1) in prolonged exposure to hyperbaric hyperoxia 
during PAD treatment, while the level of vasodilator substances (NO) 
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without a statistically significant difference. On the other hand, we 
found significantly higher serum concentrations of ET -1 in smokers 
than non-smokers. To date, data on gender dimorphism in baseline 
ET-1 levels were not present, while smoking is known to have a 
negative effect on the ability of blood vessel endothelium to respond 
by adequate secretion of vasoactive substances [44]. Considering 
some earlier findings, we expected significantly higher ET-1 levels in 
diabetic patients [45], which was not the case in our study. The effect of 
hyperglycemia on blocking the function of endothelial NO synthetase 
and enhancing the production of free radicals that interfere with 
vasodilatory homeostasis is also well known [46].

The limitations of this study were firstly the inability to accurately 
determine the serum concentration of ET-1 lower than 1.5 pg/ml, as well 
as the design of the study, which predicted that blood would be sampled 
only before the start of treatment and 10 days after the treatment, a 
fundamental obstacle in quantifying the effects of prolonged exposure 
to hyperbaric conditions.

In conclusion, the key finding of this study is that treatment of 
peripheral arterial disease with hyperbaric oxygen therapy leads to an 
overcoming of vasoconstrictor effects probably caused by elevation of 
serum ET-1 concentrations, while other factors such as exposure time to 
hyperbaric conditions and inflammation rates which are in accordance 
to stage of disease, activation of antioxidant molecules as well as the 
effects of other substances that interfere with the effects of NO must be 
considered in interpreting the effects of NO molecules.
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