Brevetoxin (a) and (b) time-resolved absorption and resonance ft-ir and raman biospectroscopy and density functional theory (dft) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-hiv drug

Alireza Heidari1,2*, Jennifer Esposito1 and Angela Caissutti1
1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract
Brevetoxin (PbTx), or brevetoxins, are a suite of cyclic polyether compounds produced naturally by a species of dinoflagellate known as Karenia brevis. Brevetoxins are neurotoxins that bind to voltage-gated sodium channels in nerve cells, leading to disruption of normal neurological processes and causing the illness clinically described as neurotoxic shellfish poisoning (NSP). Although brevetoxins are most well-studied in K. brevis, they are also found in other species of Karenia and at least one large fish kill has been traced to brevetoxins in Chattonella. Parameters such as FT-IR and Raman vibrational wavelengths and intensities for single crystal Brevetoxin (A) and (B) are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules. The current study aimed to investigate the possibility of simulating the empirical values. Analysis of vibrational spectrum of Brevetoxin (A) and (B) is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP/6-31-HEG**. Vibration modes of methylene, carboxyl acid and phenyl cycle are separately investigated. The obtained values confirm high accuracy and validity of results obtained from calculations.

Molecular structure of Brevetoxin (A) (upper) and (B) (lower).

Introduction

Brevetoxin (PbTx), or brevetoxins, are a suite of cyclic polyether compounds produced naturally by a species of dinoflagellate known as Karenia brevis. Brevetoxins are neurotoxins that bind to voltage-gated sodium channels in nerve cells, leading to disruption of normal neurological processes and causing the illness clinically described as neurotoxic shellfish poisoning (NSP). Although brevetoxins are most well-studied in K. brevis, they are also found in other species of Karenia and at least one large fish kill has been traced to brevetoxins in Chattonella. Density Functional Theory (DFT) is one of the most
powerful calculation methods for electronic structures [5-7]. Numerous results have been previously studied and indicate successful use of these methods [8-10]. The theory is one of the most appropriate methods for simulating the vibrational wavenumbers, molecular structure as well as total energy. It may be useful to initially consider the calculated results by density functional theory using HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG** approach [11-16]. It should be noted that calculations are performed by considering one degree of quantum interference as well as polarization effects of 2d orbitals in interaction [17-364].

Details of calculations

All calculations of molecular orbital in the base of ab are performed by Gaussian 09. In calculation process, the structure of Brevetoxin (A) and (B) molecule (Figure 1) is optimized and FT-IR and Raman are wavenumbers are calculated using HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG** base. All optimized structures are adjusted with minimum energy. Harmonic vibrational wavenumbers are calculated using second degree of derivation to adjust convergence on potential surface as good as possible and to evaluate vibrational energies at zero point. In optimized structures considered in the current study, virtual frequency modes are not observed which indicates that the minimum potential energy surface is correctly chosen. The optimized geometry is calculated by minimizing the energy relative to all geometrical quantities without forcing any constraint on molecular symmetry. Calculations were performed by Gaussian 09. The current calculation is aimed to maximize structural optimization using density functional theory. The calculations of density functional theory are performed by HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG** function in which non-focal functions of Becke and correlation functions of Lee-Yang-Parr beyond the Franck-Condon approximation are used. After completion of optimization process, the second order derivation of energy is calculated as a function of core coordination and is investigated to evaluate whether the structure is accurately minimized. Vibrational frequencies used to simulate spectrums presented in the current study are derived from these second order derivatives. All calculations are performed for room temperature of 545 (K).

Vibration analysis

Analysis of vibrational spectrum of Brevetoxin (A) and (B) is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG** approach. Vibration modes of methylene, carboxyl acid and phenyl cycle are separately investigated.

C-H stretching vibrations in single replacement of benzene cycles are usually seen in band range of 3240-3490 cm⁻¹. Weak Raman bands are at 3229 cm⁻¹ and 3242 cm⁻¹. C-C stretching mode is a strong Raman mode at 1239 cm⁻¹. Raman weak band is seen at 1713 cm⁻¹ too. Bending mode of C-H is emerged as a weak mode at 1438 cm⁻¹ and 1437 cm⁻¹ and a strong band at 1321 cm⁻¹ in Raman spectrum. Raman is considerably active in the range of 1240-1490 cm⁻¹ which 1233 cm⁻¹ indicates this issue.

C-H skew-symmetric stretching mode of methylene group is expected at 3225 cm⁻¹ and its symmetric mode is expected at 3039 cm⁻¹. Skew-symmetric stretching mode of CH₂ in Brevetoxin (A) and (B) has a mode in mid-range of Raman spectrum at 3140-3260 cm⁻¹. When this mode is symmetric, it is at 3135 cm⁻¹ and is sharp. The calculated wavenumbers of higher modes are at 3103 cm⁻¹ and 3133 cm⁻¹ for symmetric and skew-symmetric stretching mode of methylene, respectively.

Scissoring vibrations of CH₂ are usually seen at the range of 1567-1621 cm⁻¹ which often includes mid-range bands. Weak bands at 1580 cm⁻¹ are scissoring modes of CH₂ in Raman spectrum. Moving vibrations of methylene are usually seen at 1509 cm⁻¹. For the investigated chemical in the current study, these vibrations are at 1379 cm⁻¹ were calculated using density functional theory. Twisting and rocking vibrations of CH₂ are seen in Raman spectrum at 955 cm⁻¹ and 1229 cm⁻¹, respectively, which are in good accordance with the results at 939 cm⁻¹ and 1204 cm⁻¹.

In a non-ionized carboxyl group (COOH), stretching vibrations of carbonyl (C=O) are mainly observed at the range of 1880-1928 cm⁻¹. If dimer is considered as an intact constituent, two stretching vibrations of carbonyl for symmetric stretching are at 1780-1825 cm⁻¹ in Raman spectrum. In the current paper, stretching vibration of carbonyl mode is at 1837 cm⁻¹ which is a mid-range value.

Figure 1. Different sections of the Brevetoxin (A) (upper) and (B) (lower)
Stretching and bending bands of hydroxyl can be identified by width and band intensity which in turn is dependent on bond length of Hydrogen. In dimer form of Hydrogen bond, stretching band of O-H is of a strong Raman peak at 1407 cm\(^{-1}\) which is due to in-plane metamorphosis mode. Out-of-plane mode of O-H group is a very strong mode of peak at 1089 cm\(^{-1}\) of Raman spectrum. The stretching mode of C-O (H) emerges as a mid-band of Raman spectrum at 1287 cm\(^{-1}\).

Lattice vibrations are usually seen at the range of 0-800 cm\(^{-1}\). These modes are induced by rotary and transferring vibrations of molecules and vibrations and are including Hydrogen bond. Bands with low wavenumbers of Hydrogen bond vibrations in FT-IR and Raman spectrum (Figure 2) are frequently weak, width and unsymmetrical. Rotary lattice vibrations are frequently stronger than transferring ones. Intra-molecular vibrations with low wavenumbers involving two-bands O-H…O dimer at 128 cm\(^{-1}\), 233 cm\(^{-1}\) and 289 cm\(^{-1}\) are attributed to a rotary moving of two molecules involving in-plane rotation of molecules against each other.

Conclusion and summary

Calculations of density functional theory using HF/6-31G\(^{*}\), HF/6-31+G\(^{*}\), MP2/6-31G, MP2/6-31+G\(^{*}\), BLYP/6-31G, BLYP/6-31++G\(^{*}\), B3LYP/6-31G and B3LYP6-31-HEG\(^{**}\) levels were used to obtain vibrational wavenumbers and intensities in single crystal of Brevetoxin (A) and (B). Investigation and consideration of vibrational spectrum confirm the formation of dimer cycles in the investigated crystal with carboxyl groups from each Hydrogen molecule of acid protected from adjacent molecules. The calculated vibrational spectrum which obtains from calculations of density functional theory is in good accordance with recorded empirical values which indicates successful simulation of the problem. The obtained results indicate that the results obtained from theoretical calculations are valid through comparing with empirical recorded results.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT1201009373527. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figure. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript.

References

4. Luo, S.; Yu, W. B.; He, Y.; Ouyang, G. Size-Dependent Optical Absorption Modulation of SiGe and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries. Nanotechnology2015, 26, 085702, 10.1088/0957-4484/26/8/085702

Heidari A (2019) Brevetoxin (a) and (b) time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-hiv drug

Copyright: ©2019 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.