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Abstract

Both diabetes types, types 1 and 2, are associated with cognitive impairments. Each period of life is concerned, and this is an increasing public health problem. Animal
models have been developed to investigate the biological actors involved in such impairments. Many levels of the brain function (structure, volume, neurogenesis,
neurotransmission, behavior) are involved. In this review, we detailed the part potentially played by the Hypothalamic-Pituitary Adrenal axis in these dysfunctions.

Notably, regulating glucocorticoid levels, their receptors and their bioavailability appear to be relevant for future research studies, and treatment development.

Introduction

Diabetes is characterized by the inability of the body to produce or
respond to insulin, with the consequence that the body cannot control
the level of sugar in the blood, namely glycemia. The latest edition
of the International Diabetes Federation (IDF) Diabetes Atlas shows
that more than 460 million adults are currently living with diabetes,
with increasing prevalence, which represents a strong socio-economic
burden. There are two main types of diabetes. Type 1 Diabetes (T1D)
is commonly diagnosed during childhood and adolescence and is
characterized by the total lack of pancreatic cells producing insulin.
TI1D represents 5% of all diabetes types. Type 2 diabetes (T2D) is
more common, often develops later in life, and is usually associated
with metabolic syndrome. In T2D, high plasma glucose level is due
to a default of insulin secretion from the pancreas, or a default in
insulin action (insulin resistance). Diabetes shows comorbidities such
as cancer, infections, cardiovascular conditions or mental / cognitive
disorders. Moreover, diabetes induces a background vulnerability
that can facilitate the negative effects of these comorbidities [1]. This
suggests an additive and/or synergistic relationship between risk
factors of other diseases, consistent with the “diathesis” hypothesis of
diabetes [2].

In the organism, the brain uses almost 20% of total plasma glucose.
Glucose uptake in the brain is mainly insulin-dependent, and insulin
receptors are widely distributed in the brain [3]. Brain function critically
depends on glucose supply and insulin in the brain regulates several
functions, such as whole-body energy metabolism in the hypothalamus,
or memory formation in the hippocampus [4]. At childhood and
adolescence, glucose requirement is increased for brain growth
and development. Conversely, prolonged hyperglycemia induces
neuronal damages in both humans and other mammals. In rodents,
elevated glycemia imped myelin formation and neurotransmission [3],
which can be critical according to the state of development. The term
“diabetic encephalopathy” was introduced in 1950 as the expression of
the central complications of diabetes [5,6].

Processes linking diabetes to cognitive dysfunctions have been
recently investigated and the Hypothalamic-Pituitary Adrenal (HPA)
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axis appears as a key player in these processes. Here, we aimed to review
cognitive impairments induced by diabetes, and the involvement of a
high HPA axis in the cognitive dysfunctions induced by T1D and T2D.

Memory impairment in Diabetes
T1D:

Biessels et al. [7] suggest a “critical periods hypothesis” whereby
neurocognitive deficits in T1D occur predominantly at two crucial
periods of life, when the brain is developing in early childhood and
when the brain undergoes neurodegenerative processes with ageing. Of
note, the two positions are not mutually exclusive.

T1D occurs most often during childhood in humans when brain
development is important. This implies that cognitive impairments
following T1D can arise early in life [8]. Recently, Liu et al. showed
that childhood-onset T1D was associated with an increased risk
of neurodevelopmental disorders including attention-deficit/
hyperactivity disorder, autism spectrum disorders and intellectual
disability in a Swedish cohort [9]. Northam et al. [10] showed in
children with T1D, deficits in general intelligence, speed of processing,
learning capacity, attention, processing speed, long-term memory,
and executive skills [11]. Cognitive dysfunctions are also observed in
adolescents with T1D, impaired abilities of planning, adapting and
reacting to environment, especially in concept formation, cognitive
flexibility, anticipation, problem-solving capacity and word reading
speed [12] [13,14]. In these studies, T1D-induced cognitive alterations
are independent of the quality of metabolic control and disease
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duration. In parallel, recent studies found associations between
poor metabolic control and lower academic achievement, school
performance, problem-solving capacity and cognitive flexibility
[15-17], correlated with abnormal MRI data [18]. Aye et al. showed
that a history of diabetic ketoacidosis was associated with changes in
longitudinal cognitive and brain development [19]. Using a cross-
sectional study design, cognitive and academic tests showed that young
T1D subjects had lower verbal intelligence level compared to controls
[17]. Increased exposure to hyperglycemia was associated to their
lower spelling performance. Schoenle et al. [20] showed that impaired
intellectual development in children with T1D was associated with
glycated hemoglobin (HbA1c), age of diagnosis and sex.

Extreme hyperglycemic episodes, conducting to ketoacidosis (high
levels of blood acids called ketones), affect strongly the brain [21], but
chronic hyperglycemia has also been shown to be deleterious [22-25].
Acute hyperglycemia negatively affected spatial working memory in
adolescents [26], and chronic hyperglycemia is associated with smaller
volume of grey matter in the right cuneus and precuneus, smaller white
matter volume in the right posterior parietal region, and larger grey
matter volume in the right prefrontal region [23,27]. In young children
(4-10 years of age), alteration of gray matter related to hyperglycemia
[28] have been showed in regions with rapid development, such
as bilateral occipital and cerebellar regions, left inferior prefrontal
cortex, insula and temporal pole region. For Cameron et al. [8] the
cerebral consequences of a history of diabetic ketoacidosis and chronic
hyperglycaemia appear to have been underestimated compared to
hypoglycemia in children.

Adult patients suffering from T1D with poor metabolic control
(Hbalc > 8.8 %) show a psychomotor decline compared to those with
better control (Hbalc < 7.4 %) [6]. In a prospective study Ryan et al. [5]
found that adults with T1D showed significant declines on measures
of psychomotor efficiency compared to non-diabetic controls.
Nevertheless, no difference was seen in the domains of learning,
memory, or problem-solving tasks. At the same time, cross-sectional
studies have shown that T1D subjects have performance deficits in
multiple cognitive domains including information processing speed,
psychomotor efficiency, memory, attention, academic achievement,
visuospatial abilities and executive function [6,29]. Current and
information processing abilities are poorer in young adults with early
onset of diabetes (<7 years old) than those with later onset (7-17 years
old) [30]. Nunley et al. [31,32] found in adult diabetic patients an
incidence rate of cognitive impairments of 28% in comparison with
5% in controls. Even if cognitive deficits appear mild to moderate,
they might hamper the day-to-day life, by limiting action of patients
in more demanding situations [33]. Cognitive dysfunction appears
inversely related to HbAlc, i.e. appropriate glucose control [34].

Diabetic brain features several symptoms best described as
“accelerated brain ageing” as suggested by Biessels et al. [11]. Reduced
white matter volume was associated with decreased cognitive
performance by Wessels et al. [29], and microvascular complications
such as retinopathy were also predictive of cognitive dysfunction. MRI
measurements were not conclusive concerning a potential cerebral
atrophy [33], nevertheless early diabetes onset has been associated with
a higher ventricular volume [30,35].

The prolonged life span in T1D induces a risk for aging-related
disease as dementia [32]. A retrospective study estimated that the
risk ratio for dementia in T1D patients was 1.65 times compared to
non-T1D subjects (32]. Neurodegenerative state interferes with daily
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life activities and increase the dependency of T1D patients to social
assistance [32,36].

For McCrimmon, hypoglycemia and its rebound hyperglycaemia
interact synergistically to improve oxidative stress and inflammation,
damaging vulnerable brain regions and accelerating cognitive decline
[37]. Poor management of hypoglycemia episodes is associated with
smaller gray matter volume in the frontal lobe of children [27]. Kod]l
et al. [38] showed a correlation between reduced fractional anisotropy
(representing neuronal connectivity), the duration of diabetes,
and cognitive impairment in young adults. However, recurrent
hypoglycemia, even severe, was not correlated with fractional
anisotropy. Severe hypoglycemia was associated with smaller grey
matter volume in the left superior temporal region [25]. T1D children
experiencing severe hypoglycemia episodes before the age of five
show deficits like delayed recall and spatial orientation skills [25] [39].
Kaufman et al. [22] showed that stable glycemia improves cognitive
abilities in young children. The hippocampus, a brain structure highly
involved in spatial learning, is especially vulnerable to damage induced
by hypoglycemia [40,42]. This provides a potential mechanism for
learning and memory dysfunction occurring with T1D [43]. In TID
adults, when severe hypoglycemia occurs (seizures, even coma), studies
have shown impaired attention [44], verbal skills [45], short-term
visual-spatial and verbal memory [22,46], vigilance [47], full-scale or
verbal intelligence scores [12].

In rodents, a model of T1D has been developed by treatment with
streptozotocin (STZ). STZ is a glucosamine-nitrosourea which is
taken up specifically by Glut-2 glucose transporter, highly expressed
in pancreatic beta-cells [48] and absent in the blood brain barrier
[49]. Injection of STZ induces a significant and rapid destruction
of pancreatic beta cells. STZ diabetic rodents are unable to produce
insulin in sufficient quantities and suffer from exceedingly high
glycemia (up to 600 mg/dl). STZ-diabetic rodents display polyuria,
polydipsia and a strong delay in growth. In an ethical point of view,
we do not advise researchers to keep STZ-T1D animals for a long
time without insulin replacement [15,51]. For short diabetes duration
(2-3 weeks), the measurement of plasma fructosamine concentration
appears more relevant than HbAlc to characterize chronic
hyperglycemia [51]. In STZ-T1D rat model, chronic hyperglycemia
reduces neurons number and impedes myelination [52], and decreases
spinogenesis and dendritic arborization inside the limbic system
[53]. Both spatial learning and hippocampal long-term potentiation
(LTP, reinforcement of synaptic contacts contributing to storage of
information) are impaired, and enhancement of long-term depression
(LTD, reduction of synaptic contacts causing the opposite effect of
LTP) was measured in severely hyperglycemic rats. Both water-maze
learning and hippocampal LTP are impaired in STZ diabetic rats [54].
Repetitive hypoglycemia in young rat also impairs hippocampal LTP
[11]. Early treatment substitution with insulin reversed STZ effects
on Morris water-maze and hippocampal LTP, but not late treatment
(10 weeks) [54]. In rat, Malone et al. show that chronic hyperglycemia
could be more damaging to the developing brain than intermittent
hypoglycemia [52], whereas this observation is still debated in human.
Nevertheless, hypoglycemia was shown by Suh et al. [40] to induce
transient neurogenesis (2 weeks) and subsequent progenitor cell loss (4
weeks) in the rat hippocampus, via a sustained activation of glutamate
receptors in dentate gyrus. Studies in diabetic rats have suggested that
ketoacidosis-induced chronic neuroinflammation could contribute to
the cognitive decline of T1D individuals [55].
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Recently, intracerebroventricular STZ injection (3 mg/kg)
was shown to decrease cerebral glucose uptake (in particular in
hypothalamus and circumventricular organs), and to produce multiple
effects that mimic molecular, pathological and behavioral features of
Alzheimer’s disease (AD) [56]. This inability to metabolize glucose, and
by extension AD linked to diabetes, have been called Type 3 Diabetes
(T3D) [57]. STZ administration in rat lateral ventricles decreases brain
glucose use in the frontal and parietal cortex, and by reducing ATP and
phosphocreatine availability, diminishes energy charge potential in the
cerebral cortex [21].

There is a strong association between T1D and cognitive
impairments. It becomes more and more relevant to define the risk
factors involved in this complication, and to search therapeutic targets
on which we could act.

T2D:

T2D is one of the most common chronic metabolic diseases. As a
result of high calorie diets and sedentary lifestyles, diabetes is rapidly
becoming more prevalent in Western societies. While global prevalence
of diabetes in urban areas is 10.8%, in rural areas it is lower, at 7.2%.

However, this gap is closing, with rural prevalence on the rise
(IDF Diabetes atlas, 9th edition 2019). In addition to its well-known
adverse effects on the cardiovascular and peripheral nervous systems,
T2D also appears to negatively impact the brain, increasing the risk
of depression and dementia [59]. Prospective studies showed that
T2D people perform less in verbal memory, memory, information-
processing speed, attention and executive function [60-62], in
association with an hippocampal atrophy [27]. Mental flexibility
and global cognition were not affected in all studies [63]. Cognitive
decrements were associated with early onset of diabetes and poor
glycemic control (ACCORD Memory in Diabetes study, MIND) [64].
Both genetic and environmental factors such as a lack of exercise,
obesity, smoking, stress, and aging affect the development of insulin
resistance which is involved in neurodegeneration [65,66]. MRI
analyses identified structural atrophy (white, total gray matters, and
volume of hippocampus [67], cortex or amygdala [68,69], associated
with neuropsychological deficits and vulnerability to dementia [70,71].

Experimental animal models of T2D show impairments in
hippocampal-based memory performance [72], deficits in hippocampal
neuroplasticity including decreases in dendritic spine density and
neurogenesis [59] and decreases in synaptic transmission (LTP) [73],
whereas bolstering insulin signaling mitigates p-amyloid-induced
synapse loss in mature cultures of hippocampal neurons [72]. In a model
of hippocampal-specific insulin resistance, rats showed deficits in LTP
and spatial memory, especially long-term memory [74]. Central insulin
administration improves spatial memory in a dose-dependent fashion
in male rats [75], whereas intrahippocampal insulin microinjections
enhances memory consolidation and retrieval [76]. Acute delivery of
insulin into the rat hippocampus also promotes spatial memory in the
alternation test [77], and transiently enhances hippocampal-dependent
memory in the inhibitory avoidance test [78].

Aging is usually associated to insulin resistance, T2D and cognitive
decline. Moreover, T2D was found associated with 50% increased risk
of dementia [79,80], AD and vascular disorders [81]. Diabetes is now
considered to be the second leading risk factor for AD, following aging
itself [82]. Interestingly, Smolina et al. [36] measured an increased ratio
for developing dementia in both diabetes (T1D and T2D) in a large
cohort of patients in England.

Trends Diabetes Metab, 2022 doi: 10.15761/TDM.1000123

T2D is often associated to weight excess. Proinflammatory cytokines
produced by adipocytes can cross the blood-brain barrier and induce
neuroinflammation, which favors subsequent neurodegeneration.
Dietary manipulations appeared to ameliorate T2D alterations
in periphery that were shown to be epidemiologically linked to a
decreased incidence of AD and to retard pathogenesis in animal
models of T2D [82]. Increased inflammation induces accelerated
AP deposition [83] and/or decreased clearance and facilitates the
polymerization of Tau. A recent study suggests that Tau could be
preferentially involved in synaptic and cognitive deficits in T1D than
in T2D experimental models [84]. Insulin signaling disorders also
promote neuro-inflammation (notably elevated levels of cytokines/
chemokines and gliosis [85], apoptosis, oxidative stress, impairments
of energy metabolism and synaptic disconnections [86], all of which
lead to the development of cognitive impairment and AD, prompting
some investigators to refer AD as T3D, characterized by an insulin-
resistant brain state [87]. The concept of brain insulin resistance was
advanced by Arnold et al. [88]. Interestingly, the brain regions with
the highest densities of insulin receptors, such as the hippocampus and
temporal lobe, are also the major targets of neurodegeneration in AD.
Studies showed a strong genetic association between T2D and AD,
with candidate genes involved in insulin resistance, and others leading
to uncontrolled inflammatory stress on neuronal tissues, which can
precipitate the formation of amyloid and Tau proteins, thus worsening
AD development [89,83]. Recently, Kshirsagar et al. reviewed the role
played by insulin resistance as the connecting link between AD and
T2D [90).

To conclude, drugs that increase insulin sensitivity might have a
positive effect on the cognitive consequences of diabetes. In this regard,
members of the incretin family (notably Glucagon-like peptide-1 (GLP-
1), exendin-4 or liraglutide) could be considered as prime candidates to
delay cognitive decline, and even to improve the mild cognitive decline
and AD symptoms [4,72]. Recently, brain derived neurotrophic factor
(BDNF), dipeptidyl peptidase4 (DPP4), and Ca2+ brain dysregulation
were identified as novel biomarkers and potential therapeutic targets
for diabetes-related cognitive impairment [91,92].

An intranasal treatment with insulin could be a promising
perspective to prevent cognitive deficiencies induced by diabetes
regardless of patient age. Insulin via this route of administration
travels in convective bulk flow along perivascular pathways following
the olfactory and trigeminal nerves and importantly by passing the
blood brain barrier. In this way, insulin can reach the hippocampus
and the cortex in 15-30 min [93,94]. Importantly, intranasal insulin
does not reach the general circulation [95], thereby avoiding peripheral
hypoglycemia. Intranasal insulin administration improves working
memory in both human and animal studies, and intrahippocampal
delivery of insulin improves hippocampal-dependent spatial working
memory. This positive effect was due to regional vasoreactivity,
especially vasodilatation in the anterior brain regions, such as insular
cortex that regulates attention-related task performance [4]. Moreover,
by inhibiting apoptosis, insulin promotes neuronal survival [88]. Novak
et al. [96] demonstrated that intranasal insulin increases resting-state
connectivity between the hippocampus and the medial frontal cortex
compared to placebo.

Involvement of HPA axis in memory impairments induced by
diabetes

Glucocorticoids (cortisol in humans and most mammals,
corticosterone in rats and mice) are produced by the adrenal cortex
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and regulated by ACTH under the control of the HPA axis [97]. The
major determinants of corticosteroid action are the level of free cortisol
in the plasma and the densities of its receptors in target tissues. As little
as 5% of cortisol circulates free in the plasma, with the majority bound
with high affinity to corticosteroid binding globulin, which acts as a
reservoir and a transporter of steroid to target cells, as well as lower
affinity proteins such as albumin. The production of glucocorticoids
is contingent upon the pronounced circadian rhythm: low during
quiescence/sleep (2-10 ng/ml in male rat; 5-20 ng/ml in human), and
high during the active phase (100-250 ng/ml in male rat; 50-150 ng/
ml in human). Episodic stressful events stimulate HPA axis which can
strongly increase glucocorticoids in blood (up to 200-300 ng/ml in
male rat, and up to 500 ng/ml in human), and considerable variations
in free plasma cortisol concentrations occur. Tissue glucocorticoid
action is also determined by an intracellular enzyme that metabolizes
glucocorticoids, the 11B-hydroxysteroid dehydrogenase type 1
(11B-HSD1, [98]). Cortisol is believed to diffuse across cell membranes
and then to bind to cytoplasmic glucocorticoid receptors (GR), which
then translocate to the nucleus. GR are ligand-gated transcription
factors that regulate a plethora of genes directly or through interactions
with other transcription factors. In some tissues, especially those
involved in memory, glucocorticoids also bind mineralocorticoid
receptors (MR) with a higher affinity than GR.

Due to their pivotal role in endocrine systems, glucocorticoids have
been associated to vulnerability to many diseases, and to pathology
complications. Taking into account the involvement of the HPA
axis in neurobiology and memory, impairments in HPA function may
exacerbate the neurobiological complications of both T1D and T2D [99].

Glucocorticoid levels and cognitive functions

Both absence and excessive levels of glucocorticoids appear
deleterious for cognitive functions. Removal of glucocorticoids by
adrenalectomy or synthesis inhibition by metyrapone impairs memory
consolidation in rats [100,101], i.e basal levels of glucocorticoids are
needed for neuronal maintenance. Conversely, elevated cortisol levels
have been associated with poor cognitive ability in humans subjected
to psychosocial stress [102], during normal aging [103] and in AD
[104]. In rats, high glucocorticoids induces morphological changes in
hippocampus (notably in CA3), and cognitive deficits [105]. An acute
stressful experience decreases the number of adult-generated neurons
in the dentate gyrus in various species, and hippocampal volume
[106]. Moreover, chronic exposure to stress-induced elevations in
corticosterone suppresses adult neurogenesis, reduces LTP, and impairs
learning on hippocampus-dependent tasks in rats, such as behavior
in the Y-maze [107-109]. Diamond et al. [110] reported an inverted
U-shape relationship between the level of circulating corticosteroids,
and LTP in the hippocampus of rats. The induction of LTP in the
hippocampus is blocked by the administration of corticosterone, and
there is a negative correlation between the magnitude of LTP in the
hippocampal CAl and the level of circulating corticosteroids [106].
According to Roozendal et al., glucocorticoid effects on memory also
depends on catecholamines, notably in the basolateral amygdala [111].
Related to diabetes, it has been shown that memory deficits induced by
chronic restraint stress are related to an impaired insulin signaling in
mice, that is rescued by intranasal insulin treatment [112].

T1D

Humans with poorly controlled diabetes exhibit disturbances in
their HPA axis function, resulting in increased basal activity, high
nocturnal rise in plasma cortisol, impaired negative feedback [113], and
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greater responses to CRH stimulation [114]. Similarly, levels of adrenal
glucocorticoids are elevated in rodents with experimental diabetes,
which has been linked to memory impairments and underlying
dendritic reorganization [115]. These alterations are reversed by a
return to basal glucocorticoid concentrations [108], or prevented by
inhibiting glucocorticoid synthesis [116]. Importantly, these alterations
are also reversed with insulin treatment [117]. Because glucocorticoid
excess has been causally linked to decreased hippocampal neurogenesis
and cognitive deficits in STZ-induced diabetic adult rodents, it was
important to evaluate glucocorticoid regulation in juvenile models of
T1D, regarding the mean age of occurrence of T1D in human. Elevated
plasma concentration of corticosterone was detected in untreated
diabetic rats [118], as expected with such a chronic metabolic stress, but
only at the nadir of secretion [51]. In response to a restraint stress, the
peak of secretion of corticosterone was similar between experimental
groups, contrary to the recovery that was delayed in untreated diabetic
rats [51], suggesting an impaired feedback mechanism as described in
humans. Although insulin treatment prevented the increased levels
of corticosterone in basal conditions, there was no beneficial effect
under stress conditions [50]. Within hippocampus, corticosterone
concentration was also increased at the nadir in untreated diabetic
rats, as well as 11B-HSD1 activity. The impaired negative feedback
observed after stress may involve an altered neuronal environment that
could be related to microstructural and neurogenesis data [51]. It has
been suggested that chronic high glucocorticoid levels are responsible
for the functional and morphological degeneration occurring in the
hippocampus of T1D rats and mice [59]. Indeed, Stranahan et al.
[119] reported that impaired LTP, deficits in cognitive performance
and reduced neurogenesis were normalized in diabetic rodents after
adrenalectomy and corticosterone replacement at physiological
concentrations [120].

T2D

High glucocorticoid secretion is associated with T2D, and
promotes gluconeogenesis in the liver, suppresses peripheral glucose
uptake, enhances lipolysis, decreases insulin secretion in parallel with
an increase in insulin resistance and inflammation [121]. Furthermore,
the hippocampal insulin resistance elicited by corticosterone may
contribute to the deleterious consequences of hypercortisolism/
hyperglycemia observed in T2D [122], i.e. deficits in hippocampal
neurogenesis, synaptic plasticity and learning. Such deficits are
observed in db/db mouse, a model of T2D [59] in which obesity,
hyperglycemia, and elevations in circulating corticosterone levels arise
from a mutation that inactivates the leptin receptor [120]. Stranahan
et al. [119] studied adrenalectomized db/db mice that were given
different doses of corticosterone via drinking water (25 or 250 ug/ml
in 0.9% saline). Adrenalectomized db/db mice that had received 25
pg/ml corticosterone replacement learned the location of the hidden
platform in the Morris water maze more rapidly than sham-operated
db/db mice and adrenalectomized db/db mice receiving 250 pg/ml
corticosterone replacement.

In T2D patients, Bruehl et al. [99] measured an increased
responsiveness to CRH, coupled with diminished suppression after
dexamethasone-responsive test, indicating an abnormality in HPA
feedback sensitivity (suspected to be a predictive factor of T2D, [123]),
and related to decreased cognitive performance [124], but the brain
pathways that mediate these links have not been understood yet.
Reynolds et al. [125] showed that morning cortisol levels in elderly
people with T2D are high, with deleterious effects on cognitive
function. It has moreover been demonstrated that intranasal insulin
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Figure 1. Potential biological targets for the therapeutic approaches of the cognitive impairments induced by diabetes. 11p-HSD1: 11B-Hydroxysteroid Deshydrogenase type 1; BDNF:
brain derived neurotrophic factor ; HPA axis: Hypothalamic-Pituitary Adrenal axis ; LTP/LTD: long-term potentiation/depression ; MR/GR: mineralocorticoid/glucocorticoid receptors.

MRI: Magnetic Resonance Imaging.

may normalize stress axis activity in humans by reducing cortisol levels
[4]. This inhibitory effect may also contribute to its positive impact
on cognitive function. Glycogen synthase kinase 3 f§ promotes Tau
phosphorylation which impairs memory in T2D and is involved in AD,
and has been shown to be activated by glucocorticoids [126].

Bioavailability of glucocorticoids: the enzyme 118-HSD1

The intracellular enzyme 118-HSDI1 catalyzes intracellular
regeneration of active glucocorticoids from inert 11-keto forms in liver,
adipose tissue and brain [127]. It is widely expressed in hippocampus,
cerebellum, and neocortex, suggesting its potential involvement in
processes such as memory and learning. Sandeep et al. [128] showed
that oral administration of an 118-HSD1 inhibitor, carbenoxolone,
improved verbal fluency in 10 healthy elderly men and improved
verbal memory in 12 T2D patients. Quervain et al. showed that a rare
haplotype in the 5’ regulatory region of the gene encoding 118-HSD1
was associated with an increased risk to develop AD [129]. Related to
T1D, our group showed elevated level of 11B-HSD1 in the morning
urine of T1D children, even in the presence of insulin treatment
[130]. This result suggests an alteration of glucocorticoids metabolism
associated to T1D.

The important role of hippocampal 113-HSD1 has recently been
demonstrated in a rodent model of aging [131,132]. Indeed, 118-HSD1
null-mice resist to cognitive decline with aging [127]. Furthermore,
treatment of aged rodents with liquorice [133], carbenoxolone, or
synthetic selective inhibitors of 1183-HSD1 (for instance UE2316 [131])
improves memory by decreasing local corticosterone concentration
in brain [127,134,135] and by preventing brain atrophy [136]. Given
our data in T1D children [137], we hypothesized that 11f-HSD1 may
also be overactivated in brain of T1D and be responsible for cognitive
impairments as it is the case in old individuals. We demonstrated that
11B-HSDI1 levels were increased in T1D juvenile rats hippocampus
[50,51]. These studies point to a pivotal role for 113-HSD1 in
glucocorticoid excess induced by T1D and consequently of altered
hippocampal function (performance on the Y-maze and recognition of
adisplaced object [51]). An interesting perspective would be to evaluate
the potential beneficial effect of 113-HSD1 inhibition in untreated and
insulin-treated diabetic juvenile rats to decipher the role of 113-HSD1
in hippocampal-dependent cognitive alterations induced by T1D.
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Receptors

Brain effects of glucocorticoids are mediated via two types of
receptors: the mineralocorticoid receptors (MR) and the glucocorticoid
receptors (GR). MR are highly and specifically expressed in
hippocampus, basolateral amygdala and prefrontal cortex, a network
of brain structures involved in memory and learning processes, while
GR are widely expressed throughout the whole brain. Cortisol has a
tenfold higher binding affinity for the MR (Kd 0.5 nM) than for the
GR (Kd 15-20 nM). Consequently, MR are activated first when cortisol
levels increase, followed by GR activation when cortisol levels increase
further [138]. In accordance, it has been postulated that cortisol levels
follow an inverted U-shaped dose response curve, with very low cortisol
levels (predominantly activating MR), as well as very high cortisol levels
(activating MR and a large amount of GR) negatively affecting the
mediating function of these receptors on information processing (MR/
GRbalance) [139]. MR activation leads to retrieval of previously learned
tasks and behavioral responses to new situations, is neuroprotective,
and stimulates hippocampal function [140]. The literature suggests
that MR mediate the role of corticosterone in the appraisal of novel
situations, behavioral reactivity, and affective responses [100,141], and
enhances the performance in spatial hippocampal-dependent cognitive
tasks in rodents [142,143] and cognitive performances in human [144].
GR activation is responsible for the consolidation of new information
[145], or of a stressful event [146]. A mutation preventing GR from
dimerization suggests that gene transcription needs to be activated
for the consolidation of memory [147]. Basal corticosterone levels are
needed for effective LTP, but higher levels impair it and enhances LTD
via GR. High glucocorticoids and stressors also suppress neurogenesis
in the dentate gyrus. This U-shaped result may reflect the relative
occupancy of MR (at lower doses) and GR (at higher ones) [146] [148].
Adrenalectomy also impairs consolidation as does the knockout of
GR. However, cognitive performances are improved during chronic
blockade of GR with the glucocorticoid antagonist mifepristone
(RU486) [149,150].

Only few studies investigated the specific involvement of
corticosteroid receptors in altered memory associated to diabetes. For
instance, Revsin et al. [150] showed that GR blockade with mifepristone
(RU486) improves hippocampal alterations and cognitive impairment
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in STZ-induced T1D in mice. Interestingly, polymorphisms on the MR
and GR-coding genes were recently involved in cognition under stress
[151] and AD [152]. Modulating specific activations and inhibitions
of MR/GR might be a promising therapeutic way to prevent cognitive
impairments induced by diabetes.

Conclusion

Targeting biological actors involved in HPA axis dysfunctions could
be a relevant approach for the treatment of cognitive consequences of
diabetes. Each period of life can be concerned. Figure 1 summarizes the
vicious circle that can conduct to cognitive impairments, when brain
consequences of diabetes are worsened by glucocorticoid-mediated
effects, independently or not from aging or stressful conditions, and
from variability of individual resilience (genetic and environmental
vulnerability, comorbidities).
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