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Abstract
Side effects from acute and chronic alcohol consumption are well known. Paradoxically, however, the possibility that a moderate intake of alcohol may have a positive 
impact on secondary language learning has long been reported, and is also a popular belief. Recently, it has been reported that alcohol consumption improves the 
pronunciation of foreign languages as well as the memory effect.  However, there is no definitive report on the mechanism by which alcohol is involved in memory 
enhancement and language learning. This review aims to provide an understanding of these effects and provide a blueprint for futher research by neurologically 
describing the mechanisms and possibilities that alcohol may have on language learning.
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Introduction
Research on the behavioral effects of alcohol tends to focus on 

impairments of function and performance, and much evidence suggests 
that alcohol causes dysfunction on many levels. For example, Jellinek 
and McFarland found that alcohol induces moderate impairment of 
short-term memory [1], and Kalin et al. report that “people drink for 
thinking, talking or acting in an uncoordinated, inefficient way.” [2]. 

In contrast, Vogel found that performance of any task can 
improve with a low blood alcohol concentration [3]. Gaines reported 
that moderate amounts of alcohol improved abstract thinking, likely 
due to anxiety reduction. It has been reported that small amounts 
of alcohol may initially improve associative memory formation and 
logical reasoning, which then subsequently decline with further alcohol 
consumption [4]. Guiora concluded that small amounts of alcohol 
(approximately one and a half ounces) increase the permeability of 
ego boundaries and increase empathic capacity, resulting in the native-
like pronunciation of a second language [5]. In a recent study of 50 
German native speakers who learned Dutch, a group of low-alcoholic 
drinkers was rated by Dutch native observers to be significantly better 
at pronouncing than a group of beverages drinkers [6]. In addition, in 
the environment where participants drink alcohol ad libitum at home, the 
unit of alcohol drunk and the facilitation of memory retrograde showed 
a positive correlation [7]. This paper will review several studies that show 
contrasting effects of alcohol on the human body, and will examine the 
effects of alcohol on pronunciation of a second language and learning. 

Background
Mechanism of action of alcohol

Alcohol consumption suppresses neural activity and results in 
attention deficits, alterations in memory, mood changes, drowsiness, 
and other behavioral alterations [8]. Alcohol-induced brain 

dysfunction is characterized in several ways. For example, visual and 
auditory memories are well maintained if visual and auditory cues are 
presented at the same time. However, memory deficits are observed 
if visual and auditory cues are presented in sequence. This suggests 
that alcohol disrupts memory storage, rather than working memory 
capacity [9]. This effect of alcohol results from activation of inhibitory 
neurotransmitters such as GABA or glycine, in the mesolimbic 
dopamine (DA) system [10], and excitatory neurotransmitters such 
as glutamate [11], N-methyl-D-aspartate (NMDA) and non-NMDA 
receptors [12]. According to a study that compared glucose utilize in 
alcohol–preferring rats (P rats) and alcohol non-preferring rats (NP 
rats), glucose increased in the prefrontal cortex (PFC), and did not 
increase in the basal ganglia or the corpus callosum [13]. Furthermore, 
P rats showed higher utilization of glucose in the PFC while in a drug 
naïve state compared to NP rats [14]. In the case of P rats, PFC glucose 
utilize increased at lower alcohol concentrations, and decreased 
and decreased at higher concentrations. Alcohol NP rats showed no 
difference in glucose utilize based on alcohol concentration [15]. This 
suggests that enhanced sensitivity to alcohol in the PFC is important 
for the development of alcohol dependence. 

Lowered inhibition

The tongue loosening effect of alcohol may be due to reduced concern 
regarding mistakes in grammar [16] or to increased permeability of 
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ego boundaries [5]. The PFC is functionally and structurally adaptable 
by past experience. Normally, the PFC has inhibitory control over 
internal and external sensory-driven compulsive behaviors based on 
information obtained from past experiences. Continuous exposure 
to alcohol weakens PFC behavioral inhibition due to reward signals 
from the ventral tegmental area (VTA) dopaminergic system [17]. 
Furthermore, alcohol-induced reduction in social inhibition is due to 
the inhibition of inhibitory neurotransmitters [18]. 

In second language learning, pronunciation has unique 
characteristics that integrate the various functions of the ego used when 
learning grammar, syntax, and vocabulary [5]. Alcohol inhibits neural 
activity in the hippocampus, a brain region associated with memory, 
resulting in learning and memory impairment [8]. It is thought that 
these deficits occur due to increased grammatical and pronunciation 
errors. However, some anxiety also promotes language acquisition [19]. 
Thus, we can conclude that alcohol should be consumed in small amounts. 

In contrast to alcohol, the sedative drug valium did not affect 
performance on a pronunciation test or lower inhibition [19]. Subjects 
under deep hypnosis perform better on learning tasks than those 
under lesser types of hypnosis [20]. Therefore, there are other potential 
mechanisms that regulate lowered inhibition. 

Learning mechanisms
The PFC is the apex of the perception-action cycle that organizes 

purposeful goal-directed action and higher order behaviors such as 
language reasoning [21]. The orbitofrontal cortex (OFC) that extensively 
connected to the region of the limbic system are regulates cognitive 
needs such as memory and an “executive” network in the dorsolateral 
PFC (medial PFC in rodents). The interaction of these two areas plays 
an important role in determining behavioral responses [22,23]. This 
sequential processing of attention, planning, and decision making is 
referred to as “working memory” for the near past and “attentional set” 
the for near future. The inhibitory control of inappropriate behaviors 
of the dorsolateral PFC is important in the determination of behavior 
[17]. Examples include alcohol-induced incorrect memory of a 
sequence of audiovisual stimuli [9] and motivation related to addiction 
[24]. An in vitro study compared depolarization of membrane potential 
(up-state) caused by two weeks of persistent electrical stimulation of 
the VTA after triple-slice organotypic culture of PFC neurons while 
in an alcohol bath, to induce conditions similar to the in vivo bursting 
observed in the VTA in response to reward stimuli. It was found that 
the latter had less alcohol-induced inhibition, which was blocked after 
treatment with a DA1 receptor antagonist [25]. This suggests that the 
inhibitory action of alcohol on DA neuron bursting is offset and is 
related to enhanced NMDA receptor activity. In addition, treatment 
of cultured PFC neurons with a low concentration of an NMDA 
antagonist showed reduced the duration, amplitude, and spiking of 
the up-state [25]. Thus, it was determined that alcohol targets NMDA 
receptors located on PFC pyramidal neurons to regulate their function 
and inhibit persistent activity. Furthermore, in the presence of alcohol, 
cultured PFC pyramidal cells and fast-spiking GABA interneurons 
were activated simultaneously by electrical stimulation, despite the 
differences in electrical activity states [26]. These results show that 
highly interconnected recurrent networks exist between excitatory and 
inhibitory neurons in the PFC. Several studies have shown that alcohol 
changes glutamatergic neurotransmission in projections from the PFC 
and causes neuroplasticity in associative learning [10,17,27].

Therefore, alcohol acts on PFC neurons through NMDA receptor 
inhibition resulting in changes in glutamatergic signaling through 
interconnected networks, interferes with the inhibitory control of the 
PFC and induces neuroplasticity. 

Long-term potentiation 

Long-term potentiation (LTP) refers to a sudden, but long-term 
increase in the overall level of excitatory neurotransmission in the 
hippocampus, and is required for memory formation [28,29]. LTP 
requires glutamate receptor activation, along with GABAA receptor 
(GABAAR) inhibition. However, alcohol inhibits glutamate and excites 
GABAAR, ultimately inhibiting LTP [30,31]. 

Plasticity

Imaging PFC activity using transcranial magnetic stimulation 
(TMS) shows that the harmful effects of alcohol are attributed to the 
breakdown of functional specificity in different brain regions [32]. 
A decrease in functional heterogeneity in the right prefrontal cortex 
was observed after alcohol consumption [32]. Decreased performance 
on a verbal fluency task in intoxicated participants was observed to 
correspond to lateral activation of the left dorsolateral PFC, the area 
associated with language [33]. Another study examined the effect of 
acute alcohol on memory encoding, which has also been associated 
with the right PFC [34]. In all experiments, alcohol lowered task 
performance and was associated with decreased bilateral PFC activity. 

Reversibility

As described above, previous studies have demonstrated that 
alcohol dependent patients showed a decrease in glucose metabolism 
in the medial frontal cortex and poor performance on the Wisconsin 
Card Sorting Task [35]. After 16-30 days of abstinence, frontal glucose 
metabolism increased, suggesting that behavioral consequences of 
chronic alcoholics is reversible [36]. In addition, abstinent participants 
showed an increase in cognitive and executive function with 
corresponding increases in frontal glucose metabolism [37].

Conclusion
This paper suggest that the effects of alcohol on fluency and 

language learning ability are due to inhibition of inhibitory control 
of the PFC, specifically, by inhibiting glutamatergic NMDA receptors 
in PFC neurons and interconnected networks. Additionally, although 
alcohol has positive effects on fluency, it has negative effects on learning 
by reducing the inhibition of inappropriate learning. Further, alcohol 
induces plasticity in PFC neurons, which is necessary for learning. To 
prevent learning deficits, alcohol should be consumed in small doses 
and not for prolonged periods of time (Figure 1). 

Future studies should investigate the interaction of neuronal 
activity and the mechanism of action of alcohol. Additionally, future 
studies should examine the mechanism by which fluency becomes 
possible. Understanding the relationship between fluency and anxiety 
will be helpful for language therapy.

To investigate physiological and structural changes in the PFC in 
response to varying alcohol concentrations, the following techniques 
will need to be used: micromolecular techniques, functioning brain 
imaging studies, use of animal models, and coordinated study 
of neuroscience, neurophysiology, psychiatry, and psychology.  
Additionally, research should be directed to determine ways other than 
involving the use of alcohol to enable hypnosis and fluency.
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