

Supplementary file I

Some more details

The division of codon domains on L- and H-chains

1. Codon domains in 1st base order divided on L- and H-chains:

Total sum here 1504 with Arg 1,2 and Lys charged as in Karlson 1976.

Amino acid side chains (R):

L- and H-chains divided on G+C-coded versus A+U-coded aa

	L-chain	H-chain
G1+C1:	217	327
A1+U1:	383	577

Differences (G+C) – (A+U): quotient **~2/3:**

$$\text{L-chain} = 217 - 383 = -166 = 2 \times 83$$

$$\text{H-chain} = 327 - 577 = -250 = 3 \times 83, +1$$

In 2nd base order the sums change to C-atoms 312 and the rest 232, in A+U + 416.

2. Division of C-atoms in 2 - 3 × 192 in codon domains of aas, A2 + C2, G2 + U2:

There are three types of polarizations of codon domain pairs:

- purine - pyrimidine pairs: G+A — C+U
- complementary pairs: G+C — U+A
- keto-/amino base pairs: G+U — A+C

This last pairing shows in 2nd base order the division of C-atoms into 384 and 576:

<u>C-atoms:</u>		
	<u>L-chain</u>	<u>H-chain</u>
A2+C2:	132	252
G2+U2	252	324
	384	576

The ‘substituents’ in both groups (L+H-chains) is 272, hence an equal division of 544.

3. 1st and 2nd base domains of amino acids divided on L- and H-chains

L-chain	H-chain	L→H
1st base: 216 — 384 +/- 1	1st base 328 — 576 -/+ 1	
G1: GG-GC-GU-GA = 118 C1: CC-CU = 99 6 aa = 217	G1: GA = 73 — 45 C1: CA-CA-CG = 254 +155 4 aa = 327 = +110	
U1: UC-UG-UU = 135 A1: AG-AC-AU-AUA-AA = 248 8 aa = 383	U1: UU-UA-UGG = 328 +193 A1: AA-AUG-AG = 249 + 1 6 aa = 577 = +194	
2nd base: 216 — 384 -/+ 4	2nd base: 328 — 576 +/- 4	
G2: GG-AG-UG = 79 C2: GC-UC-CC-AC = 133 7 aa = 212	G2: CG-AG-UGG = 332 +253 C2: - = 0 —133 3 aa = 332 = +120	
U2: GU-CU-UU-AU-AUA = 271 A2: AA-GA = 117 7 aa = 388	U2: AUG-UU = 166 —105 A2: CA-GA-AA-CA-UA = 406 +289 7 aa = 572 = +184	

4. Sums of 1st and 2nd base domains of amino acids divided on L- and H-chains

A pairing according to the keto-/amino acid polarity.

Note G1 + G2 = **602**, U1 + U2 = **900**, close to the division on L- and H-chains.

L-chain	H-chain
G1+G2: 197	G1+G2: 405
U1+U2: 406	U1+U2: 494
C1+C2: 232	C1+C2: 254
<u>A1+A2: 365</u>	<u>A1+A2: 655</u>
G1+G2 + U1+U2 = 600 + 3	G1+G2 + U1+U2 = 904 — 5
A1+A2 + C1+C2 = 600 — 3	A1+A2 + C1+C2 = 904 + 5