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Introduction
The concept of energy expenditure (EE) was first proposed by Italian 

physiologist DiPrampero in 1986 and was defined as maintaining basic 
metabolism and satisfying various physical activities (PAs) [1]. Previous 
studies have shown that the level of PAs is negatively associated with the 
risk of a range of chronic diseases [2,3]. 

In the field of rehabilitation, exoskeletons are widely used to 
assist people with disabilities in their activities of daily living and 
gait training. Individualised or personalised assistance requires an 
accurate EE estimation [4], which is used to assess the effect of the 
exoskeleton on the user's energy saving as well as the burden of the 
exoskeletal structure worn by the user. Moreover, for patients with bone 
injuries [5,6], stroke [7], and surgical patients, accurate assessment of 
EE during exercise and determination of the appropriate amount of 
exercise are crucial for reducing the sedentary nature of rehabilitation 
[8]. In addition, the accurate assessment of EE in athletes can help 
develop individualised training programs [9,10]. Finally, the concept 
of individualised diagnosis and treatment has recently been proposed 
[11-13].

Thus, the real-time measurement of EE is important for human 
health and safety. EE is the state of the body that can only be inferred, 
estimated, or measured using measurable signals (e.g. heart rate). There 
are three types of measurable signals related to EE. Type 1 is governed 
by the laws of physics, chemistry, and biology. This relationship is also 
known as a relationship based on physical principles [14-16]. Type 2 
is governed, in part, by the laws of physics, chemistry, and biology. 
For example, one may determine whether a relationship is linear 
or quadratic. This relationship is called semi-empirical [14,15,17]. 
Type 3 is unknown in terms of physics, chemistry, and biology. This 
relationship is empirical [14,15,17] and can be predicted using statistics 
and machine learning. It is possible to combine two or three types of 
signals, which is also known as sensor fusion.

Different types of signals have advantages and disadvantages. 
Type 1 signals are more accurate, but invasive and non-online. Type 
2 signals are online (thus facilitating effective monitoring, while 

humans maintain natural activities and remote monitoring) and are 
less intrusive or noninvasive but less accurate. Type 3 signals are the 
most accurate, unreliable, and least stable. The development of an 
accurate, online, non-invasive, and non-intrusive method remains 
an open problem. One direction for development is to explore new 
signals that may correlate with EE and be much easier to use than 
existing signals using wearable sensors. A more general approach for 
combining can be found in [18]. For example, acceleration and heart 
rate were found to accurately correlate with EE [19,20]. However, this 
approach is not applicable to sedentary or very slow movements. One 
method to address this shortcoming is to include an electromyogram 
to form a three-signal marker [21]. Another direction of development 
that is relevant to the multi-signal marker approach is to combine them 
by considering their significant contribution to the correlation to EE, 
for example, the weighted average combination. Indeed, the generation 
of EE by PAs always occurs in an environment in which many state 
variables are generated simultaneously to contribute to their correlation 
with EE.

Based on the signal categorisation for estimating the 
aforementioned EE, methods for estimating EE include approaches 
based on physiological signal measurements, indirect measurements of 
physical signals, and subjective evaluation.

Methods based on physiological signal measurements include 
doubly labelled water, direct calorimetry, indirect calorimetry, heart 
rate, ventilation, skin temperature, and electromyography (EMG). 
Weir, et al. [22] calculated the total calories using doubly labelled 
water to monitor the body's uptake and obtained the EE using indirect 
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calorimetry [23]. Rosic, et al. [24] proposed formulas for heart rate 
(HR) and oxygen consumption to estimate and without the direct 
measurement of blood lactate concentration.

Methods based on the indirect measurement of physical signals 
include pedometers, accelerometers, inertial measurement units, 
piezoelectric energy harvesters, and visual and inertial sensors. Several 
researchers have used multiple linear or nonlinear regression models 
to estimate EE to obtain more information on the relationship between 
activity and EE [25]. A linear regression model was proposed in [26] for 

estimating the EE from acceleration signals ( ). The American 
College of Sports Medicine (ACSM) [27] proposed a walking EE 
prediction formula. Ryu, et al. [28] used two linear regression models: 
light and vigorous activity. Schmitz also developed a model to estimate 
the relationship between the EE and walking speed variation, showing 
increasing curves for overcoming inclined conditions, which included 
linear and quadratic terms to account for changes in slope trajectories 
[26]. Katch, et al. [29] studied adolescents walking on a treadmill at 
four speeds (4.2–7.6 km/h) for EE. The best-fit equation was quadratic, 
with the speed multiplied by the square of the weight as an independent 

variable ( ). Hibbing, et al. [30] found that more accurate EE 
estimates could be obtained with two regression algorithms than with 

an algorithm using only accelerometer data ( ) when hip or 
ankle wear monitoring data were applied.

Labelling and machine learning are examples of subjective 
evaluation methods. An empirical approach to model the relationship 
between EMG signals and EE is based on the assumption of a network 
structure between signals and EE. Lin and Slade, et al. [21,31] used 
support vector machine (SVM) networks and neural networks to 
estimate the EE from signals such as EMG, pressure, or motion 
sensors. Hedegaard, et al. [32] used a professional commercial 
dynamic acquisition system (Xsens-Link system) to collect data and 
personal parameters as independent variables, implemented it in a 
plasmatic EE evaluation model, and cross-validated it with the heart 
rate and oxygen mask data to demonstrate the impact of the plasmatic 
approach on energy consumption estimation. Altini, et al. [33] used a 
Bayesian network model of heart rate to estimate the EE in the context 
of low-intensity activities. Wang, et al. [34] compared the effects of 
two network models, the radial basis function network (RBFN) and 
general regression neural network (GRNN), on acceleration and ECG 
signals. The results showed that the GRNN outperformed the RBFN. 
Catal, et al. [35] used a network model called augmented decision tree 
regression combined with the median aggregation method for signals 
such as heart rate, accelerometer, and respiratory rate. Nathan, et al. [36] 
used Bayesian networks to estimate the signals. The accuracy is greatly 
improved compared to the k-nearest neighbour and linear classifiers.

Deep machine learning or deep learning refers to the deepest 
possible understanding of mapping relationships between inputs 
and outputs. Modern machine learning has two processes: feature 
construction extraction, and feature association with a target state (e.g. 
EE) (model training). In this context, deep (machine) learning involves 
automating both processes rather than automating only the second. 
Khan, et al. [37] proposed a method to automatically extract features 
from accelerometers using statistical signal processing combined with 
artificial neural networks (ANN) and autoregressive (AR) processes. 
Slade, et al. [21] used electromyography electrodes, and data from 
wearable sensors such as pressure-sensing insoles, neural networks, 
and linear regression models were developed for different conditions.

By comparing the accuracy of eight commonly used machine 
learning regression models, we found that for the nonlinear problem 
of EE prediction, the three models with the highest accuracy were 
the XGBoost-based decision tree, Gradient Boosting Decision Tree 
(GBDT), and Lightgbm models. To improve model accuracy, these 
three models were fused using an improved stacking model fusion 
algorithm. The improved model fusion algorithm based on XGBoost, 
LSTM, and Lightgbm was obtained by sacrificing a certain training 
speed and improving the problem of high prediction results of XGBoost 
through the characteristic that the prediction distribution of the LSTM 
model is different from the prediction distribution of the Decision Tree. 
The experimental results show that the method has good performance 
in terms of accuracy, efficiency, and real-time performance.

Experimental setup
A. EMG acquisition and process

1) Signal acquisition: The EMG signal sensor used in this study 
was manufactured by Shanghai OYMotion Technologies, and there 
were eight EMG channels in total, with a sampling rate of 800 Hz. The 
raw data collected were in a hexadecimal file, which was programmed 
using Python to convert the hexadecimal signals into Float32 decimal 
floating-point numbers. These data are stored in the form of each line 
for every 1s read for a feature, using the split-box algorithm; every 30 
columns correspond to a feature within a 1s feature value, for a total of 
240 columns. The signal plots of the eight EMG channels are shown in 
Figure 1 using the GUI presentation interface.

The sliding window method implements a window in time 
series data, and then moves this window slowly to perform the mean 
operation on the data within this window, and the result obtained is 
shown in Figure 2.

For neural networks and machine learning models, data 
normalisation can significantly accelerate the convergence of the 
model, and small-scale data are easier to learn. The formula for data 
normalisation is as follows: 

	 	                                   (1)

Where represents the mean of the input data and is the standard 
deviations of the input data. The distribution of normalized EMG 
characteristic is shown in Figure 3.

Figure 1.  Eight channel EMG signal acquisition program
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Figure 2.  The result of EMG signal sliding window processing by Python

Figure 3.  Distribution of normalized EMG characteristic Data (Y-axis represents value, X-axis represents time). (a) The numerical distribution of VM in medial thigh and thigh. (b) Sol in 
soleus. (c) MH in medial hamstring
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2) Exploratory Data Analysis (EDA) and feature engineering: The 
first part is to filter and pre-process the input signal. In this paper, we 
complete the "data cleaning" by graphing, fitting, correlation analysis 
between features, observing and calculating the amount of features, 
correlation coefficients, etc.

Feature engineering is strictly a post-processing part of machine 
learning that analyzes the input and output data and the correlation 
between the input and output features to eliminate some obvious 
useless features, (Figure 4). Analyzing the correlation between the input 
features and true label values allows us to determine whether there is 
a significant positive correlation between the causality of all feature 
variables and the results in the dataset itself.

From the frequency histogram shown in Figure 5, we can determine 
whether the feature data are normally distributed, left-skewed, or right-
skewed. Therefore, the data can be determined artificially to obtain an a 
priori understanding of the association between the data and EE.

3) Root Mean Square Error (RMSE) evaluation index: The output 
loss was used for the accuracy assessment. The loss function of the 
regression is the RMSE; the lower the RMSE, the more accurate the 
predicted value, which is given by the following formula:

                           (2)

	 	                                   (3)

Where yi represents each observation point, the upper equation 
represents the distance between the regression curve (predicted value 
distribution curve) obtained from the model fit and the observation 

point, and the lower equation represents the mean value and distance 
between each observation point. The coefficient of determination 
is used to indicate how well the regression model is trained and is a 
regression model-specific metric.

B. Machine learning regression-based modeling of EE

1) Decision tree-based modeling of EE: The boosting algorithm is 
the basis for the GBDT, and the objective of the GBDT is the residual, 
that is, the negative gradient value of the loss function.  Thus, boosting 
and decision-tree algorithms can help each other. XGBoost and GBDT 
are engineering implementations of the boosting algorithms. 

This subsection focuses on the advanced part of XGBoost when 
compared to the GBDT from the perspective of the loss function and 
points out some advantages and disadvantages of the algorithm.

The essence of the boosting algorithm is a summation expression 
comprising j-base learners.

	 	                                          (4)

Where is the jth base learner, and  is the predicted value of the 
ith sample.

The loss function can be represented by the operations of the 
predicted and true values.

	 	                                            (5)

Where n is the total number of samples, and L is the loss function, 
such as the root mean square error operation RMSE or mean square 
error MSE.

Machine learning is a statistical learning method that measures the 
accuracy of a model in two ways: bias and variance of the model. The 
loss function represents the bias of the model; if the variance of the 
model is small, the model should be simpler.

The complexity of the model can be controlled by adding a regular 
term to its loss function. If the loss function minimises the empirical 
risk of the model, then the regularity term minimises its structural risk. 
Thus, the variance of the model is reduced, and the function composed 
of the regular term and the loss function becomes the objective function.

	                         (6)

Figure 4.  Correlation analysis chart between input features and between input and output

Figure 5. Normalized Frequency histogram of EMG features. (a) Frequency histogram of 
lateral hamstring muscle (BF). (b) Medial gastrocnemius muscle (GAS). (c) Frequency 
histogram of lateral femoral muscle (VL). (d) Anterior tibial muscle (TA). (e) Rectus 
femoris (RF). (f) Frequency histograms of medial hamstring (MH). (g) Medial thigh (VM). 
(h) Soleus (SOL)
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Where Ω is the regularization term of the model, the so-called 
regularization term is generally used L1 regularization and L2 
regularization, and its formula is as follows.

	 	                                  (7)

Where  is the parameterisation of weight . In , this 

term is the sum of the squares of the . In , this term is the sum 

of absolute values of . 

Specifically, the objective function of XGBoost can be written as the 
following equation.

	               (8)

Where  is the predicted value given by the model at step (t-1), 

which is a known constant,  is the new model added at step t, and

 is the predicted value of the newly added model. In other words, 
the optimisation of the objective function is equivalent to solving for 

the minimum value of .

In XGBoost, a second-order Taylor expansion is performed for 

, which is the main difference from the GBDT.

The second-order Taylor expansion is formulated as follows.

           (9)

The expanded objective function equation is as follows.	

   (10)

Where and  are the first-and second-order derivatives of the 
loss function, respectively.

If the loss function  is the squared loss function MSE, 

then  and  are as follows.

                             (11)

	 	                                (12)

      (13)

Minimising the objective function is transformed into determining 
the values of the first- and second-order derivatives of the loss function 
in each step.

The drawback of the XGBoost algorithm is that there is duplication 
in the reading of the dataset at each iteration, which slows the operation. 

Therefore, Lightgbm, a lightweight approach, was proposed that is 
similar to the mathematical principle of XGBoost.

                       (14)

D is the set of data sets, the proportion of the kth category of samples 

in D is , and the Gini index reflects the probability of inconsistency 
between the categories of any two samples drawn from the data set D. 
The smaller the Gini value, the purer and more similar the information 
of the divided data set.

2) Time series data set partitioning and result evaluation 
methods: A time-series dataset is a one-dimensional feature graph of 
non-exchangeability. In a regression, it can only be iterated sequentially. 
This non-exchangeability of the time series has a significant impact on 
machine learning training.

Training set partitioning was required for both individual model 
training and subsequent model fusion training using k-fold cross-
validation. In this study, k-fold cross-training was improved using 
a self-coding dataset partitioning n to reasonably partition the data 
according to the time series, which is called the improved k-fold cross-
validation method. Two types of partitioning methods are used.

The first division is incremental and progressive, and the second 
division is similar to the idea of a sliding window. In this experiment, 
the second method was applied to improve the model fusion stacking 
algorithm, and the stacking dataset was improved from 5-fold cross-
validation (chaotic order) to sliding window dataset division, which 
could effectively prevent the data from chaotic order and the training 
data from being clearly divided. 

The experimental data were taken from the publicly available dataset 
in Slade's paper [20], as the dataset for model training and evaluation. 
The model evaluation results are shown in Table 1. In this experiment, 
the improved five-fold cross-validation method was used to predict one-
dimensional time series data, and the results obtained are shown in Table 1.

The training set error is a measure of how well a model fits the dataset 
and the test set error is a measure of how well the model generalises. 
Precision is measured by the R2 coefficient of determination, and the 
closer the coefficient is to 1, the better the curve fit.

As can be seen from Table 1, individual decision tree models have a 
tendency to overfit and are therefore discarded; however, CART decision 
tree-based models, such as the GBDT and XGBoost models, have a top 
level of both accuracy and speed for fitting such nonlinear relationships. 

Table 2 lists the results of applying feature engineering to predict 
the human energy consumption. In Table 2, compared with Table 1, 

Regression model Training set error Training time 
(hours) Test set error

GDBT Regressor 0.634 3.66306 0.980499
XGBoosting Regressor 0.999992 1.59833 0.977108

Lightgbm Regressor 0.994009 1.85351 0.975515
Bagging Regressor 0.993533 1.88308 0.971504

Lasso Regressor 0.987572 1.035499 0.950718
Ada Boost Regressor 0.95363 5.08391 0.940901

Decision Tree 
Regressor 1 1.317957 0.928449

Linear Regression 0.934234 1.34074 0.927853

Table 1.  Comparison of regression algorithm to estimate EE using 14 Signals (accuracy 
calculated by R2)
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some features were excluded for retraining, and the input variables 
with a higher correlation in human energy consumption prediction 
were identified by feature engineering. Among the three decision-tree 
models with the highest accuracy, Lightgbm improved from 0.975 to 
0.978, GBDT improved from 0.980 to 0.984, and of the coefficient of 
determination of XGBoost improved significantly from 0.977 to 0.983.

The advantage of removing useless features (input features with a 
Pearson's correlation coefficient below 0.3, feature importance) is that 
in the case of a small data sample size (less than 10000 rows), the risk 
of overfitting can be effectively reduced from the perspective of data 
structure, and fewer data and more features tend to make the model 
overfit. Feature engineering artificially dimensions the input of a 
dataset, thereby reducing the generalization error of the results.

As shown in Figures 6-8, it can be seen from Tables 1 and 2 that 
the decision-tree-based algorithms had the highest accuracy among 
all models. The decision tree-based algorithms XGBoost, GBDT, and 
Lightgbm have better generalisation performance for fitting nonlinear 
relationships, with a decision coefficient as high as 98.45%; however, in 
the test set data, The RMSE still has a deviation of approximately 30-
70w and the prediction is high compared to the actual value.

In the Lightgbm prediction , the lower deviation was approximately 
30w and the higher deviation was 100w, which shows that the variance 
of the model prediction is larger. This explains the final RMSE of 
approximately 70w. This is because the dataset is small, and Lightgbm 
is suitable for prediction on larger datasets to reduce the degree of 
overfitting, whereas the RMSE of the GBDT model is 71w.

This implies that reducing the variance of the model prediction and 
increasing the stability of the model prediction will be the next tasks 

to be performed. A common method for further reducing variance in 
model prediction is model fusion. Lasso regression is a model based on 
linear regression with an L1 regular term to prevent overfitting, and has 
the advantages of fast convergence and high accuracy.

The degree of feature importance (DoI) is measured by 
the correlation of a particular feature or signal with the EE, 
and can be calculated using the following Pearson correlation:

   
      (15)

Where X is a feature; Y is the predicted EE; and EX and EY represent 
the mathematical expectations of X and Y, respectively. Here, as a post-
processing, the predicted values according to the XGBoost model are 
taken in the experiment and the coefficients will vary between -1 and 1.  
The definitions were as follows: very strong correlation (0.8, 1.0), strong 
correlation (0.6, 0.8), moderate correlation (0.4, 0.6), weak correlation 
(i.e., low DoI) (0.2, 0.4), and no correlation.

Figure 9 shows the importance of the 14 signals calculated using 
Equation (14). In Figure 9, the rows and columns represent different 
signals. The first column on the left side of Fig. 9 indicates the correlation 
between the different signals and the energy consumption.

As shown in Figure 10, these six signals were the most important 
among the 15 signals. The EMG signals were those of the flounder, 
medial femoral, lateral femoral, and medial gastrocnemius muscles, 
and their human correlation coefficients were 0.39, 0.44, 0.40, and 
0.51, respectively. In addition, the ground reaction force in the vertical 
direction showed a strong correlation with the EE owing to the tilt 
condition (Figure 11-15). Figure 15 shows the Pearson correlation 
coefficients of the six signals. From the analyses in Figure 14 and Figure 
15, it can be observed that the EMG signals GAS,VM,VL, and SOL 

Regression model Training set 
error Test set error Test set standard 

deviation
Training time 

(hours)
GDBT Regressor 0.996631 0.984573 0.00677779 0.0821779

XGBoosting 
Regressor 0.999935 0.983237 0.00543861 0.172541

Lightgbm 
Regressor 0.996511 0.97815 0.0028755 0.0761986

Bagging Regressor 0.988732 0.9777757 0.00162806 0.160177
Lasso Regressor 0.890293 0.887219 0.01079 0.0141561

Ada Boost 
Regressor 0.911548 0.878368 0.0172662 0.229886

Decision Tree 
Regressor 1 0.867775 0.01079 0.0177521

Linear Regression 0.802545 0.772079 0.0550461 0.108515

Table 2.  Comparison of Regression Algorithm to Estimate EE using 8 Signals (accuracy 
calculated by R2)

Figure 6. XGBoost time series diagram for predicting human energy consumption

Figure 7. Lightgbm time series diagram for predicting human energy consumption

Figure 8.  GBDT time series diagram for predicting human energy consumption
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have a large influence on the predicted result Y_predict(energy(W)) 
of the XGBoost model among all features with a moderate correlation. 
Considering that there may be too much noise in this part of the data 
collection process, or that this part of the muscle itself has little influence 
on the prediction results, this part of the dataset may have a negative 
impact on the results. These three features were randomly removed, 
redundant ground reaction force features were removed, and only the 
six variables shown in the figure below were retained as input features. 
The results are summarised in Table 2. The accuracy and model training 
speed were further improved compared to those in Table 1.

C. Fused models

The specific processes of XGBoost and Lightgbm fusion in this 
experiment are shown in Figure 11. However, the stacking algorithm 
has the drawback that it is disordered when it performs dataset 
partitioning, which is contrary to the strict temporal characteristics of 

the time-series problem. In this study, the dataset partitioning strictly 
followed the concept of temporal order to obtain an improved stacking 
algorithm.

The training diagram of the improved stacking algorithm is shown 
in Figure 12. The subsequent time steps were followed in this way: 20% 
of the data were taken as the training set and 20% of the data were 
taken as the validation set, until the data were taken, and the prediction 
results of the five steps were finally averaged as the final output.

Results and discussion
A. Model fusion based on XGBoost, GBDT and Lightgbm

As shown in Figure 13, the dataset and features used were consistent 
with the experiments used in Table 2. The RMSE of this model fusion 
in the prediction results of the test set was reduced from about 66-70 W 

Figure 9.  Calculated and sorted by Person correlation. Explain the relationship between 
different features, and the first line in left means the relationship between inputs and outputs 
(energy)

Figure 10.  The six most important features based on the person coefficient

Figure 11.  Training diagram of stacking algorithm

Figure 12.  Training diagram of improved stacking algorithm

Figure 13.  Comparison of stacking prediction results with real Tags
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for the original single model to 51 W, which significantly improved the 
accuracy of the model. From the entire timestamp, the results of model 
fusion are closer to the real label than those of the single model. Thus, 
the real label values of human energy consumption can be better fitted. 
The best prediction results were obtained in the time steps of 0s–25s, 
200s to 250s and 300–325s, but there were still some prediction results 
with a large offset from the true value. 

Both XGBoost and Lightgbm are nonlinear models based on Cart 
decision regression trees, and the accuracy adjustment of the models 
plays a crucial role in whether the models can achieve the highest 
accuracy. The correlation analysis of primary learners in Stacking is 
shown in Figure 14. The following provides a further description of the 
XGBoost model parameters and their mathematical principles. One 
of the most important hyperparameters is learning_rate, which is set 
to 1 by default and is also the weight reduction factor of each weak 
learner, also called the step size. The subsample is the sampling ratio of 
the training samples, that is, the subsampling of the dataset, and takes 
the value (0,1). Here, 0.8 is chosen as the result. 

N_estimators indicate the number of boosted trees, that is, the 
number of training rounds, and the 1500 effect was measured in the 
experiment. By writing the model parameter search function, the loss of 
model training was reduced to a minimum when the learning rate was 
0.0004887 and n_estimators=300 in the model selection parameters 
were obtained. The remaining parameter combinations are obtained 
by manual tuning of the parameters according to experience, and the 
global optimum is obtained (Figure 15).

The blue and yellow lines represent the training and test set losses, 
respectively. By adjusting the learning rate of the model parameters n_
estimators, the test set error is made as close as possible to the training 
set error so that the results converge.

B. LSTM based energy consumption expenditure prediction
1) Analysis of LSTM principle: LSTM is a recurrent neural network 

that recirculates the output as an input for the next time step for each 
neuron. It has the advantage of being able to influence subsequent 
events by the previous moment's events, that is, a memory function. 
However, recurrent neural networks can have a problem in that there 
is less influence on the initial time-step weights because of the gradual 
derivation of the error during backpropagation. LSTM improves the 
easy-forgetting properties of traditional recurrent neural networks by 
introducing a three-class gate structure.

As shown in Figure 16, the LSTM contains three main types of gates 
internally, and the three types of gate structures have three functions, 
i.e., forgetting gate, input gate, and output gate.

The forgetting gate equation is shown in (16).

	 	                              (16)

Figure 14.  Correlation analysis of primary learners in stacking

Figure 15.  Visualization of stacking training process percentage error reduction of 
prediction set and verification set

Figure 16.  LSTM internal three kinds of gate logic diagram
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Where is the output of the previous moment, is the current 

input, the obtained  is a value in the range of 0-1. The primary role of 
the forgetting gate is to actively control the forgetting process. 

The input gate formula is shown in (17).

	                          (17)

The input gate contains three parts, the first part is used to decide 
which parts should be taken to memory for this input by the sigmoid 
function. The second part is used to generate a new state variable  
for the next layer of the forgetting gate update. In the third part, the 

previous state variable  is forgotten by the forgetting gate, and the 

state variable  at the current moment is selectively learned, and the 

weighted sum is obtained for the real learned variable  at the current 
moment.

The output gate equation is shown in (18).

	 	                             (18)

Among the output gates, the standard output  is obtained by 
calculating the output  learned from the input data at the current 
moment and the cumulative knowledge  learned at the previous 
moment, weighted and then compressed to the range of -1~1 by the 
tanh function.

From Figure 17, it can be seen that the single LSTM model has a 
good fit for human energy consumption prediction, whereas in the case 
of consistently high prediction based on the decision tree model, the 
LSTM model regressed above and below the true value.

However, variance and bias values were high. The accuracy measure 
RMSE was 127.778 W, which was significantly higher than those of the 
XGBoost, GBDT, and Lightgbm models.

However, from the perspective of model fusion, the fusion of LSTM 
with XGBoost and Lightgbm may compensate for high prediction 

results. It is known from the previous experiment that model fusion 
can significantly reduce the variance of the prediction results. Although 
the variance of the results is reduced, the problem of high prediction 
results still remains.

In LSTM, XGBoost, and Lightgbm for model fusion, we tried 
to maintain the same dataset selection and model hyperparameter 
selection as in the previous experiment and only changed the GBDT 
in the primary learner to LSTM for cross-sectional comparison using 
this method.

As shown in Figure 18, one disadvantage of the LSTM is that the 
number of training iterations is significantly higher than that of the 
decision-tree-based model.

2) LSTM parameter setting and experimental procedure: The 
LSTM model is built in general with the following parts.

In the first step, the dataset is loaded and normalized. 

The second step is to slide the dataset in a time window using the 
shift function inside the pandas and then splice it into the original 
dataset after it becomes new data. 	

The third step is to slice the dataset and cut the dataset in 
order, taking 20% as the training set and 20% as the validation set. 
Subsequently, the algorithm iterates sequentially until the entire dataset 
is traversed.

The fourth step is to convert the training and validation set data 
into the input data format of the LSTM.

The fifth step is to design the network structure, which is the 
most important part of the LSTM model setup. The LSTM model is 
a stitching of each LSTM cell mentioned in the previous subsection; 
therefore, setting up the LSTM cells is the first step in the model design. 
Subsequently, the dense structure, which is the same as the structure of 
each layer of an ordinary ANN, was used for the regression prediction. 
In addition, a loss function optimiser for the model must be set up. 
Networks differ from traditional regression algorithms like decision 
trees in that they use a back propagation algorithm to reduce the loss, 
where the 'Adam' optimiser is often used for its fast convergence and 
high accuracy. The loss function was set to the RMSE.

In the sixth step, the parameters are set and tuned. The main 
parameters were the epoch (number of iterations) of the model, Figure 17.  Comparison of prediction results and real values based on LSTM model

Figure 18.  The percentage error of training set and prediction set in LSTM model training 
process
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batchsize, and input batch. This part was manually tuned to determine 
whether the training was overfitting, by observing whether the loss of 
the validation set was reasonably low.

As shown in the comparison between Figure 19 and Figure 9, 
the correlation between the output energy and each input feature is 
significantly different between the two plots, and the importance of the 
features and the correlation between the features learned by the LSTM 
are completely different from those learned by the decision-tree-based 
model.

For the LSTM model, VL, VM, BF, and MH are strongly correlated 
variables; therefore, these features cannot be eliminated and are 
important for the prediction results, which is again very different 
from the conclusions obtained in previous feature engineering using 
XGBoost. From this, we can observe that the mapping relationship 
between the input and output learned by the LSTM is completely 
different from that of the previous XGBoost model. The focus of the 
LSTM model and XGBoost are different, and LSTM gives more weight 
to VL, VM, BF, and MH; therefore, these two different models can 
complement each other when fused to further reduce variance and 
enhance generalisation.

C. Model fusion based on XGBoosting, LSTM and Lightgbm

The purpose of this experiment was to analyse and investigate 
the best combination of model combinations for model fusion. For 
the fitting of nonlinear relationships, the effects of traditional linear 
regression and Lasso regression based on linear regression as the base 
learner were not satisfactory. The LSTM neural network, as a completely 
different algorithm from the decision tree algorithm, can also be 
concluded from the previous subsection to have a better prediction 
ability for this type of nonlinear problem. Therefore, an attempt was 
made to fuse the decision-tree and LSTM algorithms to determine the 
best model combination.

From Figure 20, it can be seen that the model fusion algorithm 
based on XGBoost and LSTM can effectively reduce the RMSE of the 
model, which is lower than the RMSE value of the XGBoost, GBDT, 
and Lightgbm model fusion. An RMSE of 25 W enabled the overall 

prediction to reach a very high level of accuracy. Unlike the high results 
obtained by the decision-tree-based model fusion, the LSTM algorithm 
effectively compensates for the problems of the decision-tree-based 
XGBoost and Lightgbm algorithms, as the results are regressed above 
and below the true values.

In Figure 21, the yellow line represents the validation set error, 
and the blue line represents the prediction set error. If the number of 
iterations increases, the training set error decreases and the validation 
set error increases, indicating that the model overfits and can be 
improved by feature engineering or by adding regular terms.

If the training set error decreases and the validation set error 
decreases, there is still a gap between the two, indicating that the loss 
function of the model does not decrease and the prediction ability of 
the model for the problem reaches the upper limit, which can only be 
solved by replacing the model or the dataset. If the error of the training 
set is elevated, it indicates that there is a problem with the dataset, and 
data cleaning is required to exclude anomalies. The final stacking model 
was obtained by fusing the LSTM, XGBoost, and Lightgbm algorithms. 
The model selection and construction of a human energy consumption 
prediction system that can be applied to practical predictions were 
obtained by introducing LSTM models with significant improvements 
in accuracy and generalisation performance at the expense of 
computing speed.

Figure 19.  Visualization of LSTM training process percentage error

Figure 20.  Comparison of stacking prediction results with real Tags

Figure 21. Visualization of Lightgbm training process -- percentage error reduction of 
prediction set and verification set
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A comparison of the stacking model prediction timing diagram 
and real labels suggests that the stacking algorithm is more accurate and 
stable than the individual models. In addition to the comparison between 
Figure 22 and Figure 14, it can be concluded that the fusion of models based 
on different principles offers better accuracy in estimating the EE, and the 
model generalisation performance was significantly improved.

The prediction results of the decision tree models are very similar; 
therefore, their model fusion can only reduce the impact of individual 
outliers on the overall model and cannot solve the overestimation 
issue, which is a common problem in decision tree model prediction. 
Unlike LSTM, the distribution of the prediction results was completely 
different from that of XGBoost and Lightgbm. The correlation is very 
low, and the individual prediction values are lower than the true values. 
Thus, the fusion of the two different types of models can effectively 
reduce the overestimation rate.

Conclusion
EE is widely applied in sports, rehabilitation loss and exoskeleton 

design, but traditional measurement methods are time-consuming 
and laborious, therefore, fast and accurate sensor-based algorithms has 
become a top priority in this field. In this study, surface EMG sensors 
and machine learning algorithms were used for the prediction of EE. 
For nonlinear problems such as EE prediction, the Pearson correlation 
coefficient analysis between the input features was first proposed, the 
fitting coefficient of the XGBoost model before and after the feature 
engineering increased from 0.977 to 0.983. The machine learning fusion 
algorithm of time series prediction was improved and optimized, and 
the improved stacking algorithm was proposed. The model fusion by 
XGBoost and Lightgbm reduces the RMSE from 60-70W in a single 
model to 51W. It demonstrated that the improved model can reduce the 
prediction error and improve the stability. The model fusion algorithm 
of LSTM, XGBoost and Lightgbm gave a higher accuracy for EE 
prediction, and the RMSE is reduced from 51W to 25W again, with an 
improvement of accuracy of nearly 64%, and the timing diagrams are 
also more stable.
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