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Abstract

As a physiological index, energy expenditure (EE), is of great significance in sports rehabilitation and other fields. The traditional way to measure EE is time
consuming and requires heavy equipment. Therefore, it is important to develop a fast and accurate method to predict EE. The surface electromyography (sSEMG)
is one of the most important parameters in estimating EE, however, it is often used in a single model, which leads to poor accuracy and stability. In this paper, the
machine learning regression algorithm based on the decision tree model represented by the XGBoost and the neural network model represented by the long short
memory term (LSTM) were applied to predict and evaluate EE. Finally, these models were fused, and the prediction results of various models were further improved

by the fusion algorithm.

Introduction

The concept of energy expenditure (EE) was first proposed by Italian
physiologist DiPrampero in 1986 and was defined as maintaining basic
metabolism and satisfying various physical activities (PAs) [1]. Previous
studies have shown that the level of PAs is negatively associated with the
risk of a range of chronic diseases [2,3].

In the field of rehabilitation, exoskeletons are widely used to
assist people with disabilities in their activities of daily living and
gait training. Individualised or personalised assistance requires an
accurate EE estimation [4], which is used to assess the effect of the
exoskeleton on the user's energy saving as well as the burden of the
exoskeletal structure worn by the user. Moreover, for patients with bone
injuries [5,6], stroke [7], and surgical patients, accurate assessment of
EE during exercise and determination of the appropriate amount of
exercise are crucial for reducing the sedentary nature of rehabilitation
[8]. In addition, the accurate assessment of EE in athletes can help
develop individualised training programs [9,10]. Finally, the concept
of individualised diagnosis and treatment has recently been proposed
[11-13].

Thus, the real-time measurement of EE is important for human
health and safety. EE is the state of the body that can only be inferred,
estimated, or measured using measurable signals (e.g. heart rate). There
are three types of measurable signals related to EE. Type 1 is governed
by the laws of physics, chemistry, and biology. This relationship is also
known as a relationship based on physical principles [14-16]. Type 2
is governed, in part, by the laws of physics, chemistry, and biology.
For example, one may determine whether a relationship is linear
or quadratic. This relationship is called semi-empirical [14,15,17].
Type 3 is unknown in terms of physics, chemistry, and biology. This
relationship is empirical [14,15,17] and can be predicted using statistics
and machine learning. It is possible to combine two or three types of
signals, which is also known as sensor fusion.

Different types of signals have advantages and disadvantages.
Type 1 signals are more accurate, but invasive and non-online. Type
2 signals are online (thus facilitating effective monitoring, while
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humans maintain natural activities and remote monitoring) and are
less intrusive or noninvasive but less accurate. Type 3 signals are the
most accurate, unreliable, and least stable. The development of an
accurate, online, non-invasive, and non-intrusive method remains
an open problem. One direction for development is to explore new
signals that may correlate with EE and be much easier to use than
existing signals using wearable sensors. A more general approach for
combining can be found in [18]. For example, acceleration and heart
rate were found to accurately correlate with EE [19,20]. However, this
approach is not applicable to sedentary or very slow movements. One
method to address this shortcoming is to include an electromyogram
to form a three-signal marker [21]. Another direction of development
that is relevant to the multi-signal marker approach is to combine them
by considering their significant contribution to the correlation to EE,
for example, the weighted average combination. Indeed, the generation
of EE by PAs always occurs in an environment in which many state
variables are generated simultaneously to contribute to their correlation
with EE.

Based on the signal categorisation for estimating the
aforementioned EE, methods for estimating EE include approaches
based on physiological signal measurements, indirect measurements of
physical signals, and subjective evaluation.

Methods based on physiological signal measurements include
doubly labelled water, direct calorimetry, indirect calorimetry, heart
rate, ventilation, skin temperature, and electromyography (EMG).
Weir, et al. [22] calculated the total calories using doubly labelled
water to monitor the body's uptake and obtained the EE using indirect
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calorimetry [23]. Rosic, et al. [24] proposed formulas for heart rate
(HR) and oxygen consumption to estimate and without the direct
measurement of blood lactate concentration.

Methods based on the indirect measurement of physical signals
include pedometers, accelerometers, inertial measurement units,
piezoelectric energy harvesters, and visual and inertial sensors. Several
researchers have used multiple linear or nonlinear regression models
to estimate EE to obtain more information on the relationship between
activity and EE [25]. A linear regression model was proposed in [26] for

estimating the EE from acceleration signals (R*> = 0.74 ). The American
College of Sports Medicine (ACSM) [27] proposed a walking EE
prediction formula. Ryu, et al. [28] used two linear regression models:
light and vigorous activity. Schmitz also developed a model to estimate
the relationship between the EE and walking speed variation, showing
increasing curves for overcoming inclined conditions, which included
linear and quadratic terms to account for changes in slope trajectories
[26]. Katch, et al. [29] studied adolescents walking on a treadmill at
four speeds (4.2-7.6 km/h) for EE. The best-fit equation was quadratic,
with the speed multiplied by the square of the weight as an independent

variable (R*> = 0.86 ). Hibbing, et al. [30] found that more accurate EE
estimates could be obtained with two regression algorithms than with

an algorithm using only accelerometer data (R*=0.70) when hip or
ankle wear monitoring data were applied.

Labelling and machine learning are examples of subjective
evaluation methods. An empirical approach to model the relationship
between EMG signals and EE is based on the assumption of a network
structure between signals and EE. Lin and Slade, et al. [21,31] used
support vector machine (SVM) networks and neural networks to
estimate the EE from signals such as EMG, pressure, or motion
sensors. Hedegaard, et al. [32] used a professional commercial
dynamic acquisition system (Xsens-Link system) to collect data and
personal parameters as independent variables, implemented it in a
plasmatic EE evaluation model, and cross-validated it with the heart
rate and oxygen mask data to demonstrate the impact of the plasmatic
approach on energy consumption estimation. Altini, et al. [33] used a
Bayesian network model of heart rate to estimate the EE in the context
of low-intensity activities. Wang, et al. [34] compared the effects of
two network models, the radial basis function network (RBFN) and
general regression neural network (GRNN), on acceleration and ECG
signals. The results showed that the GRNN outperformed the RBFN.
Catal, et al. [35] used a network model called augmented decision tree
regression combined with the median aggregation method for signals
such as heart rate, accelerometer, and respiratory rate. Nathan, et al. [36]
used Bayesian networks to estimate the signals. The accuracy is greatly
improved compared to the k-nearest neighbour and linear classifiers.

Deep machine learning or deep learning refers to the deepest
possible understanding of mapping relationships between inputs
and outputs. Modern machine learning has two processes: feature
construction extraction, and feature association with a target state (e.g.
EE) (model training). In this context, deep (machine) learning involves
automating both processes rather than automating only the second.
Khan, et al. [37] proposed a method to automatically extract features
from accelerometers using statistical signal processing combined with
artificial neural networks (ANN) and autoregressive (AR) processes.
Slade, et al. [21] used electromyography electrodes, and data from
wearable sensors such as pressure-sensing insoles, neural networks,
and linear regression models were developed for different conditions.
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By comparing the accuracy of eight commonly used machine
learning regression models, we found that for the nonlinear problem
of EE prediction, the three models with the highest accuracy were
the XGBoost-based decision tree, Gradient Boosting Decision Tree
(GBDT), and Lightgbm models. To improve model accuracy, these
three models were fused using an improved stacking model fusion
algorithm. The improved model fusion algorithm based on XGBoost,
LSTM, and Lightgbm was obtained by sacrificing a certain training
speed and improving the problem of high prediction results of XGBoost
through the characteristic that the prediction distribution of the LSTM
model is different from the prediction distribution of the Decision Tree.
The experimental results show that the method has good performance
in terms of accuracy, efficiency, and real-time performance.

Experimental setup

A. EMG acquisition and process

1) Signal acquisition: The EMG signal sensor used in this study
was manufactured by Shanghai OYMotion Technologies, and there
were eight EMG channels in total, with a sampling rate of 800 Hz. The
raw data collected were in a hexadecimal file, which was programmed
using Python to convert the hexadecimal signals into Float32 decimal
floating-point numbers. These data are stored in the form of each line
for every 1s read for a feature, using the split-box algorithm; every 30
columns correspond to a feature within a 1s feature value, for a total of
240 columns. The signal plots of the eight EMG channels are shown in
Figure 1 using the GUI presentation interface.

The sliding window method implements a window in time
series data, and then moves this window slowly to perform the mean
operation on the data within this window, and the result obtained is
shown in Figure 2.

For neural networks and machine learning models, data
normalisation can significantly accelerate the convergence of the
model, and small-scale data are easier to learn. The formula for data
normalisation is as follows:

X = 1

Where represents the mean of the input data and is the standard
deviations of the input data. The distribution of normalized EMG
characteristic is shown in Figure 3.

Figure 1. Eight channel EMG signal acquisition program
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Fx_R Fy_R Fz_R Fx_L Fy_L Fz L soL GAS TA MH BF VM VL RF

0 -25.831327 -4.856966 -312.048358 16.013405 -0.588300 -336.746894 0.240462 0.212230 0.233950 0.120019 0.331430 0.207212 0.340845 -30.297600
1 -31.054947 -3.549983 -413.666519 10.524877 -4.500161 -249.127949 0.330566 0.273035 0.222162 0.063187 0.371803 0.216785 0.332087 -28.318762
2 -25.932741 -4.590990 -313.313117 15.048253 1.261738 -336.058085 0.261802 0.207666 0.252128 0.120767 0.376766 0.215641 0.337492 -28.797380
3 -26.480120 -5934122 -364.007960 11.171735 -1.166912 -285.588374 0.262793 0.237469 0.229944 0110763 0.321791 0.194685 0322358 -23.868635
4 -26.769906 -1.089968 -328.345274 13.752813 -1.973002 -322.682155 0.269612 0.199310 0.273981 0.146576 0.407863 0.220796 0.342165 -34.575532
5 -26.055927 -4.553628 -328.492725 15719386 3.363610 -323.293338 0.308341 0.176467 0.282451 0.113445 0.371182 0.276963 0.389597 -33.981861
6 -26.358105 -1.475434 -324.272087 15.079284 -2.029072 -325.571199 0.235179 0.235314 0.251764 0.127742 0423669 0.255864 0.406290 -31.453469
7 -25.981106 -1.778378 -328.485550 13.208249 -2.109515 -321.945492 0.274294 0.214584 0.307557 0.134051 0.524033 0.257906 0.468404 -29.910291
8 -25.778390 -2.572315 -323.006980 14.101933  0.855583 -326.453365 0.230027 0.223332 0.269766 0.138620 0412889 0.225224 0.360311 -27.518405
9 -25.736083 -2.393691 -323.373056 14.039773 0.231815 -328.473741 0.281343 0.182732 0.301023 0.124084 0.375063 0.234059 0.371776 -25.830165
10 -25.876758 -4.108089 -324.171596 12.943860 -0.102182 -325.400023 0.291015 0.225794 0.242748 0.125889 0.424322 0.225017 0.368105 -28.022350
11 -26.026548 -1.699680 -325.431799 13.097650 -0.450963 -326.551485 0.262580 0.227016 0.242433 0.121738 0.418540 0.215973 0.342149 -29.671362
12 -26.162082 -1.178769 -326.110017 14.299166 -3.181702 -322.054156 0.305166 0.234245 0.291831 0.148929 0.413032 0.268700 0.383719 -35.208557
13 -26.239999 -0.702933 -320.365066 16.069613  1.189103 -332.264129 0.230637 0.207589 0.258758 0.113781 0.358780 0.226926 0.371109 -36.511250
14 -25.001668 -3.093481 -325.322084 12.633220 -1.282525 -324.417003 0.285608 0.239854 0.265683 0.123192 0.462363 0.268564 0.373342 -22.861062

15 -26.5376650 0.252041 -328.925395 12.971813 -3.184155 -322.875013 0.286952 0.225876 0.285924 0.136002 0.455141 0.227124 0.398749 -34.188593

Figure 2. The result of EMG signal sliding window processing by Python
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Figure 3. Distribution of normalized EMG characteristic Data (Y-axis represents value, X-axis represents time). (a) The numerical distribution of VM in medial thigh and thigh. (b) Sol in
soleus. (¢) MH in medial hamstring
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Figure 4. Correlation analysis chart between input features and between input and output

2) Exploratory Data Analysis (EDA) and feature engineering: The
first part is to filter and pre-process the input signal. In this paper, we
complete the "data cleaning" by graphing, fitting, correlation analysis
between features, observing and calculating the amount of features,
correlation coefficients, etc.

Feature engineering is strictly a post-processing part of machine
learning that analyzes the input and output data and the correlation
between the input and output features to eliminate some obvious
useless features, (Figure 4). Analyzing the correlation between the input
features and true label values allows us to determine whether there is
a significant positive correlation between the causality of all feature
variables and the results in the dataset itself.

From the frequency histogram shown in Figure 5, we can determine
whether the feature data are normally distributed, left-skewed, or right-
skewed. Therefore, the data can be determined artificially to obtain an a
priori understanding of the association between the data and EE.

3) Root Mean Square Error (RMSE) evaluation index: The output
loss was used for the accuracy assessment. The loss function of the
regression is the RMSE; the lower the RMSE, the more accurate the
predicted value, which is given by the following formula:

N
RMSE = \/ % Y (true — prediction) )
i=1
Z (yl )}1) :
R =1— S (3)
—\ 2
z (yi - y,-)

i=1

Where yi represents each observation point, the upper equation
represents the distance between the regression curve (predicted value
distribution curve) obtained from the model fit and the observation
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point, and the lower equation represents the mean value and distance
between each observation point. The coefficient of determination
is used to indicate how well the regression model is trained and is a
regression model-specific metric.

B. Machine learning regression-based modeling of EE

1) Decision tree-based modeling of EE: The boosting algorithm is
the basis for the GBDT, and the objective of the GBDT is the residual,
that is, the negative gradient value of the loss function. Thus, boosting
and decision-tree algorithms can help each other. XGBoost and GBDT
are engineering implementations of the boosting algorithms.

This subsection focuses on the advanced part of XGBoost when
compared to the GBDT from the perspective of the loss function and
points out some advantages and disadvantages of the algorithm.

The essence of the boosting algorithm is a summation expression
comprising j-base learners.

J
Vi= aft(xi) (4)
Where fis the jth base learner, and Vi is the predicted value of the
ith sample.

The loss function can be represented by the operations of the
predicted and true values.

L= Ell(yi;fi) (5)

Where n is the total number of samples, and L is the loss function,
such as the root mean square error operation RMSE or mean square
error MSE.

Machine learning is a statistical learning method that measures the
accuracy of a model in two ways: bias and variance of the model. The
loss function represents the bias of the model; if the variance of the
model is small, the model should be simpler.

The complexity of the model can be controlled by adding a regular
term to its loss function. If the loss function minimises the empirical
risk of the model, then the regularity term minimises its structural risk.
Thus, the variance of the model is reduced, and the function composed
of the regular term and the loss function becomes the objective function.

Obj= T3+ X Q(f) ©

i=1

Figure 5. Normalized Frequency histogram of EMG features. (a) Frequency histogram of
lateral hamstring muscle (BF). (b) Medial gastrocnemius muscle (GAS). (c¢) Frequency
histogram of lateral femoral muscle (VL). (d) Anterior tibial muscle (TA). (e) Rectus
femoris (RF). (f) Frequency histograms of medial hamstring (MH). (g) Medial thigh (VM).
(h) Soleus (SOL)
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Where Q is the regularization term of the model, the so-called
regularization term is generally used L, regularization and L,
regularization, and its formula is as follows.

ZIQ(fx): Mol (7)

Where |w]||? is the parameterisation of weight @. In n=2, this
term is the sum of the squares of the @ . In 7 =1, this term is the sum
of absolute values of ®.

Specifically, the objective function of XGBoost can be written as the
following equation.

n t

Obj"= X I(y, )+ X Q(f)
i=1 i=1

i= i=

Pas

10317+ 1)+ £ 2(7) ®)

i=

Where J; ' is the predicted value given by the model at step (t-1),
which is a known constant, f; is the new model added at step t, and

f:(x) is the predicted value of the newly added model. In other words,
the optimisation of the objective function is equivalent to solving for

the minimum value of f;(x,).
In XGBoost, a second-order Taylor expansion is performed for
f+(x:), which is the main difference from the GBDT.

The second-order Taylor expansion is formulated as follows.

. 1.
St A~ fx)+ (DA + 5 () A 9)
The expanded objective function equation is as follows.
n N l t
Obj(() =X [,y )+ efilx)+ Ehiftz (x) |+ ZQ(f) (10)
i=1 i=1

Where g;and 4 are the first-and second-order derivatives of the
loss function, respectively.

If the loss function (¥, )31-171) is the squared loss function MSE,

then 4, and % are as follows.

oy~ =) ai
gi:Tzz(% =) (11)
B2 *itfli iz
hi:%zz (12)

Obf"= X g f.(e)+ 3h f2(0) |+ SQ(U)  (13)
i=1 i=1

Minimising the objective function is transformed into determining
the values of the first- and second-order derivatives of the loss function
in each step.

The drawback of the XGBoost algorithm is that there is duplication
in the reading of the dataset at each iteration, which slows the operation.

Phys Med Rehabil Res, 2025 doi: 10.15761/PMRR.1000227

Therefore, Lightgbm, a lightweight approach, was proposed that is
similar to the mathematical principle of XGBoost.

[yl [yl

Gini(D)= X X pipy=1— X p} (14)
k=K +k k=1
Dis the set of data sets, the proportion of the kth category of samples

in D is Pk, and the Gini index reflects the probability of inconsistency
between the categories of any two samples drawn from the data set D.
The smaller the Gini value, the purer and more similar the information
of the divided data set.

2) Time series data set partitioning and result evaluation
methods: A time-series dataset is a one-dimensional feature graph of
non-exchangeability. In a regression, it can only be iterated sequentially.
This non-exchangeability of the time series has a significant impact on
machine learning training.

Training set partitioning was required for both individual model
training and subsequent model fusion training using k-fold cross-
validation. In this study, k-fold cross-training was improved using
a self-coding dataset partitioning n to reasonably partition the data
according to the time series, which is called the improved k-fold cross-
validation method. Two types of partitioning methods are used.

The first division is incremental and progressive, and the second
division is similar to the idea of a sliding window. In this experiment,
the second method was applied to improve the model fusion stacking
algorithm, and the stacking dataset was improved from 5-fold cross-
validation (chaotic order) to sliding window dataset division, which
could effectively prevent the data from chaotic order and the training
data from being clearly divided.

The experimental data were taken from the publicly available dataset
in Slade's paper [20], as the dataset for model training and evaluation.
The model evaluation results are shown in Table 1. In this experiment,
the improved five-fold cross-validation method was used to predict one-
dimensional time series data, and the results obtained are shown in Table 1.

The training set error is a measure of how well a model fits the dataset
and the test set error is a measure of how well the model generalises.
Precision is measured by the R? coefficient of determination, and the
closer the coefficient is to 1, the better the curve fit.

As can be seen from Table 1, individual decision tree models have a
tendency to overfit and are therefore discarded; however, CART decision
tree-based models, such as the GBDT and XGBoost models, have a top
level of both accuracy and speed for fitting such nonlinear relationships.

Table 2 lists the results of applying feature engineering to predict
the human energy consumption. In Table 2, compared with Table 1,

Table 1. Comparison of regression algorithm to estimate EE using 14 Signals (accuracy
calculated by R2)

Training time

Regression model Training set error Test set error

(hours)
GDBT Regressor 0.634 3.66306 0.980499
XGBoosting Regressor 0.999992 1.59833 0.977108
Lightgbm Regressor 0.994009 1.85351 0.975515
Bagging Regressor 0.993533 1.88308 0.971504
Lasso Regressor 0.987572 1.035499 0.950718
Ada Boost Regressor 0.95363 5.08391 0.940901
D;“;:r‘;’;sgee 1 1317957 0.928449
Linear Regression 0.934234 1.34074 0.927853
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Figure 6. XGBoost time series diagram for predicting human energy consumption

Table 2. Comparison of Regression Algorithm to Estimate EE using 8 Signals (accuracy
calculated by R2)

Regression model Training set Test set error Test set'stffndard Training time
error deviation (hours)
GDBT Regressor 0.996631 0.984573 0.00677779 0.0821779
XGBoosting 0.999935 0.983237 0.00543861 0.172541
Regressor
Lightgbm
0.996511 0.97815 0.0028755 0.0761986
Regressor
Bagging Regressor 0.988732 0.9777757 0.00162806 0.160177
Lasso Regressor 0.890293 0.887219 0.01079 0.0141561
Ada Boost 0.911548 0.878368 0.0172662 0.229886
Regressor
Decision Tree 1 0.867775 0.01079 0.0177521
Regressor
Linear Regression 0.802545 0.772079 0.0550461 0.108515

some features were excluded for retraining, and the input variables
with a higher correlation in human energy consumption prediction
were identified by feature engineering. Among the three decision-tree
models with the highest accuracy, Lightgbm improved from 0.975 to
0.978, GBDT improved from 0.980 to 0.984, and of the coefficient of
determination of XGBoost improved significantly from 0.977 to 0.983.

The advantage of removing useless features (input features with a
Pearson's correlation coefficient below 0.3, feature importance) is that
in the case of a small data sample size (less than 10000 rows), the risk
of overfitting can be effectively reduced from the perspective of data
structure, and fewer data and more features tend to make the model
overfit. Feature engineering artificially dimensions the input of a
dataset, thereby reducing the generalization error of the results.

As shown in Figures 6-8, it can be seen from Tables 1 and 2 that
the decision-tree-based algorithms had the highest accuracy among
all models. The decision tree-based algorithms XGBoost, GBDT, and
Lightgbm have better generalisation performance for fitting nonlinear
relationships, with a decision coefficient as high as 98.45%; however, in
the test set data, The RMSE still has a deviation of approximately 30-
70w and the prediction is high compared to the actual value.

In the Lightgbm prediction , the lower deviation was approximately
30w and the higher deviation was 100w, which shows that the variance
of the model prediction is larger. This explains the final RMSE of
approximately 70w. This is because the dataset is small, and Lightgbm
is suitable for prediction on larger datasets to reduce the degree of
overfitting, whereas the RMSE of the GBDT model is 71w.

This implies that reducing the variance of the model prediction and
increasing the stability of the model prediction will be the next tasks

Phys Med Rehabil Res, 2025 doi: 10.15761/PMRR.1000227

to be performed. A common method for further reducing variance in
model prediction is model fusion. Lasso regression is a model based on
linear regression with an L regular term to prevent overfitting, and has
the advantages of fast convergence and high accuracy.

The degree of feature importance (Dol) is measured by
the correlation of a particular feature or signal with the EE,
and can be calculated using the following Pearson correlation:

o Cov(X,Y) _ E((X—EX)(Y —EY))
P v/D(X)x+/D() VD(X) X/ D)

Where X is a feature; Yis the predicted EE; and EX and EY represent
the mathematical expectations of X and Y, respectively. Here, as a post-
processing, the predicted values according to the XGBoost model are
taken in the experiment and the coeflicients will vary between -1 and 1.
The definitions were as follows: very strong correlation (0.8, 1.0), strong
correlation (0.6, 0.8), moderate correlation (0.4, 0.6), weak correlation
(i.e., low Dol) (0.2, 0.4), and no correlation.

(15)

Figure 9 shows the importance of the 14 signals calculated using
Equation (14). In Figure 9, the rows and columns represent different
signals. The first column on the left side of Fig. 9 indicates the correlation
between the different signals and the energy consumption.

As shown in Figure 10, these six signals were the most important
among the 15 signals. The EMG signals were those of the flounder,
medial femoral, lateral femoral, and medial gastrocnemius muscles,
and their human correlation coefficients were 0.39, 0.44, 0.40, and
0.51, respectively. In addition, the ground reaction force in the vertical
direction showed a strong correlation with the EE owing to the tilt
condition (Figure 11-15). Figure 15 shows the Pearson correlation
coefficients of the six signals. From the analyses in Figure 14 and Figure
15, it can be observed that the EMG signals GAS,VM,VL, and SOL
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have a large influence on the predicted result Y_predict(energy(W))
of the XGBoost model among all features with a moderate correlation.
Considering that there may be too much noise in this part of the data
collection process, or that this part of the muscle itself has little influence
on the prediction results, this part of the dataset may have a negative
impact on the results. These three features were randomly removed,
redundant ground reaction force features were removed, and only the
six variables shown in the figure below were retained as input features.
The results are summarised in Table 2. The accuracy and model training
speed were further improved compared to those in Table 1.

C. Fused models

The specific processes of XGBoost and Lightgbm fusion in this
experiment are shown in Figure 11. However, the stacking algorithm
has the drawback that it is disordered when it performs dataset
partitioning, which is contrary to the strict temporal characteristics of
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the time-series problem. In this study, the dataset partitioning strictly
followed the concept of temporal order to obtain an improved stacking
algorithm.

The training diagram of the improved stacking algorithm is shown
in Figure 12. The subsequent time steps were followed in this way: 20%
of the data were taken as the training set and 20% of the data were
taken as the validation set, until the data were taken, and the prediction
results of the five steps were finally averaged as the final output.

Results and discussion

A. Model fusion based on XGBoost, GBDT and Lightgbm

As shown in Figure 13, the dataset and features used were consistent
with the experiments used in Table 2. The RMSE of this model fusion
in the prediction results of the test set was reduced from about 66-70 W

Training dataset | Validation set

XGBoost Model LSTM Model XGBoost Model LSTM Model
Training Training Prediction Prediction
Predicted values as new feature
Values meta-learner learning
L - - - a
|- - ———— = |
‘ Meta- I
XGBoost LSTM . .
I Test o0s Learner ‘Weighted fusion to ‘
Model Model L |
I Date Set . L Model get final submission
Prediction Prediction . |
[ Prediction |
I

Figure 11. Training diagram of stacking algorithm
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Figure 12. Training diagram of improved stacking algorithm

Feature data from the next time step is fed into
the trained fusion model
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Energy consumption (W)

200 250 300 350 400
time(s)

Figure 13. Comparison of stacking prediction results with real Tags
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for the original single model to 51 W, which significantly improved the
accuracy of the model. From the entire timestamp, the results of model
fusion are closer to the real label than those of the single model. Thus,
the real label values of human energy consumption can be better fitted.
The best prediction results were obtained in the time steps of 0s-25s,
200s to 250s and 300-325s, but there were still some prediction results
with a large offset from the true value.

Both XGBoost and Lightgbm are nonlinear models based on Cart
decision regression trees, and the accuracy adjustment of the models
plays a crucial role in whether the models can achieve the highest
accuracy. The correlation analysis of primary learners in Stacking is
shown in Figure 14. The following provides a further description of the
XGBoost model parameters and their mathematical principles. One
of the most important hyperparameters is learning rate, which is set
to 1 by default and is also the weight reduction factor of each weak
learner, also called the step size. The subsample is the sampling ratio of
the training samples, that is, the subsampling of the dataset, and takes
the value (0,1). Here, 0.8 is chosen as the result.
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Figure 14. Correlation analysis of primary learners in stacking
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Figure 15. Visualization of stacking training process percentage error reduction of
prediction set and verification set
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Figure 16. LSTM internal three kinds of gate logic diagram

N_estimators indicate the number of boosted trees, that is, the
number of training rounds, and the 1500 effect was measured in the
experiment. By writing the model parameter search function, the loss of
model training was reduced to a minimum when the learning rate was
0.0004887 and n_estimators=300 in the model selection parameters
were obtained. The remaining parameter combinations are obtained
by manual tuning of the parameters according to experience, and the
global optimum is obtained (Figure 15).

The blue and yellow lines represent the training and test set losses,
respectively. By adjusting the learning rate of the model parameters n_
estimators, the test set error is made as close as possible to the training
set error so that the results converge.

B. LSTM based energy consumption expenditure prediction

1) Analysis of LSTM principle: LSTM is a recurrent neural network
that recirculates the output as an input for the next time step for each
neuron. It has the advantage of being able to influence subsequent
events by the previous moment's events, that is, a memory function.
However, recurrent neural networks can have a problem in that there
is less influence on the initial time-step weights because of the gradual
derivation of the error during backpropagation. LSTM improves the
easy-forgetting properties of traditional recurrent neural networks by
introducing a three-class gate structure.

As shown in Figure 16, the LSTM contains three main types of gates
internally, and the three types of gate structures have three functions,
i.e., forgetting gate, input gate, and output gate.

The forgetting gate equation is shown in (16).

f,:U(W/-'[h,,,,x,]+b/) (16)
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Where h,_, is the output of the previous moment, X, is the current

input, the obtained f is a value in the range of 0-1. The primary role of
the forgetting gate is to actively control the forgetting process.

The input gate formula is shown in (17).

i=oW)-[h_,x]+b
C/=tanh (W, [h,_;,x,]+b.)
C=fi*C;+i*xC/ (17)
The input gate contains three parts, the first part is used to decide
which parts should be taken to memory for this input by the sigmoid

function. The second part is used to generate a new state variable C,
for the next layer of the forgetting gate update. In the third part, the

previous state variable C,_; is forgotten by the forgetting gate, and the
state variable C, at the current moment is selectively learned, and the

weighted sum is obtained for the real learned variable C, at the current
moment.

The output gate equation is shown in (18).

0, = G(Wo : [h,,,,x,] + bn)
h, = tanh (C,)
Among the output gates, the standard output /4, is obtained by
calculating the output O, learned from the input data at the current
moment and the cumulative knowledge C, learned at the previous
moment, weighted and then compressed to the range of -1~1 by the
tanh function.

(18)

From Figure 17, it can be seen that the single LSTM model has a
good fit for human energy consumption prediction, whereas in the case
of consistently high prediction based on the decision tree model, the
LSTM model regressed above and below the true value.

However, variance and bias values were high. The accuracy measure
RMSE was 127.778 W, which was significantly higher than those of the
XGBoost, GBDT, and Lightgbm models.

However, from the perspective of model fusion, the fusion of LSTM
with XGBoost and Lightgbm may compensate for high prediction
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Figure 17. Comparison of prediction results and real values based on LSTM model
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Figure 18. The percentage error of training set and prediction set in LSTM model training
process

results. It is known from the previous experiment that model fusion
can significantly reduce the variance of the prediction results. Although
the variance of the results is reduced, the problem of high prediction
results still remains.

In LSTM, XGBoost, and Lightgbm for model fusion, we tried
to maintain the same dataset selection and model hyperparameter
selection as in the previous experiment and only changed the GBDT
in the primary learner to LSTM for cross-sectional comparison using
this method.

As shown in Figure 18, one disadvantage of the LSTM is that the
number of training iterations is significantly higher than that of the
decision-tree-based model.

2) LSTM parameter setting and experimental procedure: The
LSTM model is built in general with the following parts.

In the first step, the dataset is loaded and normalized.

The second step is to slide the dataset in a time window using the
shift function inside the pandas and then splice it into the original
dataset after it becomes new data.

The third step is to slice the dataset and cut the dataset in
order, taking 20% as the training set and 20% as the validation set.
Subsequently, the algorithm iterates sequentially until the entire dataset
is traversed.

The fourth step is to convert the training and validation set data
into the input data format of the LSTM.

The fifth step is to design the network structure, which is the
most important part of the LSTM model setup. The LSTM model is
a stitching of each LSTM cell mentioned in the previous subsection;
therefore, setting up the LSTM cells is the first step in the model design.
Subsequently, the dense structure, which is the same as the structure of
each layer of an ordinary ANN, was used for the regression prediction.
In addition, a loss function optimiser for the model must be set up.
Networks differ from traditional regression algorithms like decision
trees in that they use a back propagation algorithm to reduce the loss,
where the 'Adam’ optimiser is often used for its fast convergence and
high accuracy. The loss function was set to the RMSE.

In the sixth step, the parameters are set and tuned. The main
parameters were the epoch (number of iterations) of the model,
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Figure 19. Visualization of LSTM training process percentage error

batchsize, and input batch. This part was manually tuned to determine
whether the training was overfitting, by observing whether the loss of
the validation set was reasonably low.

As shown in the comparison between Figure 19 and Figure 9,
the correlation between the output energy and each input feature is
significantly different between the two plots, and the importance of the
features and the correlation between the features learned by the LSTM
are completely different from those learned by the decision-tree-based
model.

For the LSTM model, VL, VM, BE and MH are strongly correlated
variables; therefore, these features cannot be eliminated and are
important for the prediction results, which is again very different
from the conclusions obtained in previous feature engineering using
XGBoost. From this, we can observe that the mapping relationship
between the input and output learned by the LSTM is completely
different from that of the previous XGBoost model. The focus of the
LSTM model and XGBoost are different, and LSTM gives more weight
to VL, VM, BE and MH; therefore, these two different models can
complement each other when fused to further reduce variance and
enhance generalisation.

C. Model fusion based on XGBoosting, LSTM and Lightgbm

The purpose of this experiment was to analyse and investigate
the best combination of model combinations for model fusion. For
the fitting of nonlinear relationships, the effects of traditional linear
regression and Lasso regression based on linear regression as the base
learner were not satisfactory. The LSTM neural network, as a completely
different algorithm from the decision tree algorithm, can also be
concluded from the previous subsection to have a better prediction
ability for this type of nonlinear problem. Therefore, an attempt was
made to fuse the decision-tree and LSTM algorithms to determine the
best model combination.

From Figure 20, it can be seen that the model fusion algorithm
based on XGBoost and LSTM can effectively reduce the RMSE of the
model, which is lower than the RMSE value of the XGBoost, GBDT,
and Lightgbm model fusion. An RMSE of 25 W enabled the overall

Phys Med Rehabil Res, 2025 doi: 10.15761/PMRR.1000227

prediction to reach a very high level of accuracy. Unlike the high results
obtained by the decision-tree-based model fusion, the LSTM algorithm
effectively compensates for the problems of the decision-tree-based
XGBoost and Lightgbm algorithms, as the results are regressed above
and below the true values.

In Figure 21, the yellow line represents the validation set error,
and the blue line represents the prediction set error. If the number of
iterations increases, the training set error decreases and the validation
set error increases, indicating that the model overfits and can be
improved by feature engineering or by adding regular terms.

If the training set error decreases and the validation set error
decreases, there is still a gap between the two, indicating that the loss
function of the model does not decrease and the prediction ability of
the model for the problem reaches the upper limit, which can only be
solved by replacing the model or the dataset. If the error of the training
set is elevated, it indicates that there is a problem with the dataset, and
data cleaning is required to exclude anomalies. The final stacking model
was obtained by fusing the LSTM, XGBoost, and Lightgbm algorithms.
The model selection and construction of a human energy consumption
prediction system that can be applied to practical predictions were
obtained by introducing LSTM models with significant improvements
in accuracy and generalisation performance at the expense of
computing speed.
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Figure 20. Comparison of stacking prediction results with real Tags
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A comparison of the stacking model prediction timing diagram
and real labels suggests that the stacking algorithm is more accurate and
stable than the individual models. In addition to the comparison between
Figure 22 and Figure 14, it can be concluded that the fusion of models based
on different principles offers better accuracy in estimating the EE, and the
model generalisation performance was significantly improved.

The prediction results of the decision tree models are very similar;
therefore, their model fusion can only reduce the impact of individual
outliers on the overall model and cannot solve the overestimation
issue, which is a common problem in decision tree model prediction.
Unlike LSTM, the distribution of the prediction results was completely
different from that of XGBoost and Lightgbm. The correlation is very
low, and the individual prediction values are lower than the true values.
Thus, the fusion of the two different types of models can effectively
reduce the overestimation rate.

Conclusion

EE is widely applied in sports, rehabilitation loss and exoskeleton
design, but traditional measurement methods are time-consuming
and laborious, therefore, fast and accurate sensor-based algorithms has
become a top priority in this field. In this study, surface EMG sensors
and machine learning algorithms were used for the prediction of EE.
For nonlinear problems such as EE prediction, the Pearson correlation
coefficient analysis between the input features was first proposed, the
fitting coefficient of the XGBoost model before and after the feature
engineering increased from 0.977 to 0.983. The machine learning fusion
algorithm of time series prediction was improved and optimized, and
the improved stacking algorithm was proposed. The model fusion by
XGBoost and Lightgbm reduces the RMSE from 60-70W in a single
model to 51W. It demonstrated that the improved model can reduce the
prediction error and improve the stability. The model fusion algorithm
of LSTM, XGBoost and Lightgbm gave a higher accuracy for EE
prediction, and the RMSE is reduced from 51W to 25W again, with an
improvement of accuracy of nearly 64%, and the timing diagrams are
also more stable.

Conflicts of interest

The authors declare that they have no conflict of interest.

Phys Med Rehabil Res, 2025 doi: 10.15761/PMRR.1000227

Acknowledgement

This work was financially supported by the National Administration
of Traditional Chinese Medicine Scientific Research Project-System
Construction, Evaluation and Application of Pingle Bone Setting for
Prevention and Treatment of Knee Osteoarthritis (GZK-KJS-2023-012).

References

1. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and
sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease.
Diabetes 56: 2655-2667. [Crossref]

2. Nordstoga AL, Zotcheva E, Svedahl ER, Nilsen TIL, Skarpsno ES (2019) Long-term
changes in body weight and physical activity in relation to all-cause and cardiovascular
mortality: The HUNT study. Int J Behav Nutr Phys Act 16: 45. [Crossref

3. Margaria R, Cerretelli P, Diprampero PE, Massari C, Torelli G (1963) Kinetics and
mechanism of oxygen debt contraction in man. J Appl Physiol 18: 371-377. [Crossref]

4. ChangY, KangJ, Jeong B, Kim G, Lim B, et al. (2023) Verification of industrial worker
walking efficiency with wearable hip exoskeleton. Appl Sci 13: 12609. [Crossref]

5. Ekegren CL, Beck B, Climie RE, Owen N, Dunstan DW, et al. (2018) Physical activity
and sedentary behavior subsequent to serious orthopedic injury: A systematic review.
Arch Phys Med Rehabil 99: 164.¢6-177.¢€6. [Crossref]

6. Lipperts M, van Laarhoven S, Senden R, Heyligers I, Grimm B (2017) Clinical
validation of a body-fixed 3D accelerometer and algorithm for activity monitoring in
orthopaedic patients. J Orthop Translat 11: 19-29. [Crossref]

7. Compagnat M, Mandigout S, Batcho CS, Vuillerme N, Salle JY, et al. (2020) Validity
of wearable actimeter computation of total energy expenditure during walking in post-
stroke individuals. Ann Phys Rehabil Med 63: 209-215. [Crossref]

8. Bamberga M, Rizzi M, Gadaleta F, Grechi A, Baiardini R, et al. (2015) Relationship
between energy expenditure, physical activity and weight loss during CPAP treatment
in obese OSA subjects. Respir Med 109: 540-545. [Crossref]

9. Mitchell L, Wilson L, Duthie G, Pumpa K, Weakley J, et al. (2024) Methods to assess
energy expenditure of resistance exercise: A systematic scoping review. Sports Med 54:
2357-2372. [Crossref]

10. Udomtaku K, Konharn K (2020) Energy expenditure and movement activity analysis
of sepaktakraw players in the Thailand league. J Exerc Sci Fit 18: 136-141. [Crossref]

11. Fang Z, Chen L, Moser MAJ, Zhang W, Qin Z, et al. (2021) Electroporation-based
therapy for brain tumors: A review. J Biomech Eng 143: 100802. [Crossref]

12. Wang F, Qian Z, Lin Y, Zhang W (2021) Design and rapid construction of a cost-
effective virtual haptic device. IEEE/ASME Transactions on Mechatronics 26: 66-77.

13. Yin R, Qian X, Kang L, Wang K, Zhang H, et al. (2021) A step towards glucose
control with a novel nanomagnetic-insulin for diabetes care. Int J Pharm 601: 120587.
[Crossref]

14. Modi S, Tiwari MK, Lin Y, Zhang WJ (2011) On the architecture of a human-centered
CAD agent system. Comput Aided Des 43: 170-179.

15. Schoeller DA (1988) Measurement of energy expenditure in free-living humans by
using doubly labeled water. J Nutr 118: 1278-1289. [Crossref]

16. Schoeller DA, Luke AH (1997) Rapid 180 analysis of CO, samples by continuous-flow
isotope ratio mass spectrometry. J Mass Spectrom 32: 1332-1336. [Crossref]

17. Wu ZF, Li J, Cai MY, Lin Y, Zhang WJ (2016) On membership of black-box or white-
box of artificial neural network models. In 2016 IEEE 11th Conference on Industrial
Electronics and Applications (ICIEA) 1400-1404.

18. Modi S, Lin Y, Cheng L, Yang G, Liu L, et al. (2011) A socially inspired framework for
human state inference using expert opinion integration. IEEE/ASME Transactions on
Mechatronics 16: 874-878.

19. Ravussin E, Harper IT, Rising R, Bogardus C (1991) Energy expenditure by doubly
labeled water: Validation in lean and obese subjects. Am J Physiol 261: E402—-E409.
[Crossref]

20. Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J,
et al. (2017) Accelerometer data collection and processing criteria to assess physical
activity and other outcomes: A systematic review and practical considerations. Sports
Med 47: 1821-1845. [Crossref

2

. Slade P, Troutman R, Kochenderfer MJ, Collins SH, Delp SL (2019) Rapid energy
expenditure estimation for ankle assisted and inclined loaded walking. J Neuroeng
Rehabil 16: 67. [Crossref

Volume 8: 11-12


https://pubmed.ncbi.nlm.nih.gov/17827399/
https://pubmed.ncbi.nlm.nih.gov/31109336/
https://pubmed.ncbi.nlm.nih.gov/13932994/
https://pubmed.ncbi.nlm.nih.gov/28629991/
https://pubmed.ncbi.nlm.nih.gov/29662766/
https://pubmed.ncbi.nlm.nih.gov/31408710/
https://pubmed.ncbi.nlm.nih.gov/25769295/
https://pubmed.ncbi.nlm.nih.gov/38896201/
https://pubmed.ncbi.nlm.nih.gov/32477418/
https://pubmed.ncbi.nlm.nih.gov/33991087/
https://pubmed.ncbi.nlm.nih.gov/33845153/
https://pubmed.ncbi.nlm.nih.gov/3142975/
https://pubmed.ncbi.nlm.nih.gov/9423283/
https://pubmed.ncbi.nlm.nih.gov/1909495/
https://pubmed.ncbi.nlm.nih.gov/28303543/
https://pubmed.ncbi.nlm.nih.gov/31171003/

Zhang H (2025) A fused model for energy expenditure prediction

22.

23.

24.

25.

26.

27.

28.

29.

Weir J B de V (1949) New methods for calculating metabolic rate with special reference
to protein metabolism. J Physiol 109: 1-9.

Cvetkovi¢ B, Mili¢ R, Lustrek M (2016) Estimating energy expenditure with multiple
models using different wearable sensors. IEEE J Biomed Health Inform 20: 1081-1087.
[Crossref]

Rosic G, Pantovic S, Niciforovic J, Colovic V, Rankovic V, et al. (2011) Mathematical
analysis of the heart rate performance curve during incremental exercise testing. Acta
Physiol Hung 98: 59-70. [Crossref]

Schmitz KH, Treuth M, Hannan P, Mcmurray R, Ring KB, et al. (2005) Predicting
energy expenditure from accelerometry counts in adolescent girls. Med Sci Sports
Exerc 37: 155-161. [Crossref]

Ainsworth BE (2000) Compendium of physical activities: An update of activity codes
and MET intensities. Med Sci Sports Exerc 32: S498.

Dal U, Erdogan T, Resitoglu B, Beydagi H (2010) Determination of preferred walking
speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture 31:
366-369. [Crossref]

Ryu N, Kawahawa Y, Asami T (2008) A calorie count application for a mobile phone
based on METS value. In 2008 5th Annual IEEE communications society conference
on sensor, mesh and ad hoc communications and networks 583-584.

Katch V, Becque M, Marks C, Moorehead C, Rocchini A (1988) Oxygen uptake and
energy output during walking of obese male and female adolescents. Am J Clin Nutr
47:26-32. [Crossref]

30.

3

32.

33.

34.

35.

36.

37.

Hibbing PR, Lamunion SR, Kaplan AS, Crouter SE (2018) Estimating energy
expenditure with actigraph GT9X inertial measurement unit. Med Sci Sports Exerc 50:
1093-1102. [Crossref]

. Tikkanen O, Karkkéinen S, Haakana P, Kallinen M, Pullinen T, et al. (2014) EMG,

heart rate, and accelerometer as estimators of energy expenditure in locomotion. Med
Sci Sports Exerc 46: 1831-1839. [Crossref]

Hedegaard M, Anvari-Moghaddam A, Jensen BK, Jensen CB, Pedersen MK, et al.
(2020) Prediction of energy expenditure during activities of daily living by a wearable
set of inertial sensors. Med Eng Phys 75: 13-22. [Crossref]

Altini M, Casale P, Penders J, Amft O (2015) Personalized cardiorespiratory fitness and
energy expenditure estimation using hierarchical Bayesian models. J Biomed Inform
56: 195-204. [Crossref]

Lin CW, Yang YT, Wang JS, Yang YC (2012) A wearable sensor module with a neural-
network-based activity classification algorithm for daily energy expenditure estimation.
IEEE Trans Inf Technol Biomed 16: 991-998. [Crossref]

Catal C, Akbulut A (2018) Automatic energy expenditure measurement for health
science. Comput Methods Programs Biomed 157: 31-37. [Crossref]

Nathan D, Huynh DQ, Rubenson J, Rosenberg M (2015) Estimating physical activity
energy expenditure with the kinect sensor in an exergaming environment. PLoS One
10: e0127113. [Crossref]

Khan AM, Lee YK, Lee SY, Kim TS (2010) A triaxial accelerometer-based physical-
activity recognition via augmented-signal features and a hierarchical recognizer. IEEE
Trans Inf Technol Biomed 14: 1166-1172. [Crossref]

Copyright: ©2025 Zhang H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Phys Med Rehabil Res, 2025

doi: 10.15761/PMRR.1000227

Volume 8: 12-12


https://pubmed.ncbi.nlm.nih.gov/25974959/
https://pubmed.ncbi.nlm.nih.gov/21388932/
https://pubmed.ncbi.nlm.nih.gov/15632682/
https://pubmed.ncbi.nlm.nih.gov/20129785/
https://pubmed.ncbi.nlm.nih.gov/3337038/
https://pubmed.ncbi.nlm.nih.gov/29271847/
https://pubmed.ncbi.nlm.nih.gov/24504428/
https://pubmed.ncbi.nlm.nih.gov/31679905/
https://pubmed.ncbi.nlm.nih.gov/26079263/
https://pubmed.ncbi.nlm.nih.gov/22875251/
https://pubmed.ncbi.nlm.nih.gov/29477433/
https://pubmed.ncbi.nlm.nih.gov/26000460/
https://pubmed.ncbi.nlm.nih.gov/20529753/

	Title
	Correspondence
	Key words
	Abstract 
	Introduction
	Experimental setup
	Results and discussion
	Conclusion
	Conflicts of interest
	Acknowledgement
	References

