
Alireza Heidari*
Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing- Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD). It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time (Figures 1-13) [1-138].

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time (Figures 1-13) [1-138].

Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com, Alireza.Heidari@calsu.us

Received: March 08, 2018; Accepted: March 19, 2018; Published: March 23, 2018

Figure 1. Small-Angle X-Ray Scattering (SAXS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 2. Ultra-Small Angle X-Ray Scattering (USAXS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 3. Fluctuation X-Ray Scattering (FXS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].
Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation

Figure 4. Wide-Angle X-Ray Scattering (WAXS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 5. Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 6. Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 7. Small-Angle Neutron Scattering (SANS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 8. Grazing-Incidence Small-Angle Neutron Scattering (GISANS) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 9. X-Ray Diffraction (XRD) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 10. Powder X-Ray Diffraction (PXRD) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 11. Wide-Angle X-Ray Diffraction (WAXD) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

Figure 12. Grazing-Incidence X-Ray Diffraction (GIXD) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].
Figure 13. Energy-Dispersive X-Ray Diffraction (EDXRD) analysis of malignant human cancer cells and tissues a. before and b. after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-138].

References

18. Heidari A (2016) Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4)– and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biomass 7: 292.
19. Heidari A (2016) Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J 7: e112.
27. Heidari A (2016) Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis 1: 2.

113. Heidari A (2017) Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (µHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Chem 3: 57-340.

116. Heidari A (2017) Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (µHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Biomed Tech 7: 335-340.

119. Heidari A (2017) Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum 2: 41-46.

121. Heidari A (2018) Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm 3: 1011.

