Can preoperative serum thyroglobulin and anti-thyroglobulin levels predict malignant potential of a thyroid nodule with atypia or follicular lesion of undetermined significance?

Amal Alhefdhi1,2*, Tahani Altayyar1, Saad M Alqhtaani1, Mohammed Alshehri1, Salahudin Elnaas4 and Saif Alsobhi1,2

1Department of General Surgery, Breast and Endocrine Section, King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia
2Alfaisal University, Riyadh, Saudi Arabia
3Department of Surgery, King Abdulaziz Hospital, Ministry of Health, Makkah, Saudi Arabia
4Department of Surgery, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia
5Department of Surgery, King Saud Medical City, Riyadh, Saudi Arabia
6Department of Radiology, King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia

Abstract

Background: The heterogeneity of atypia of undetermined significance (AUS) and follicular lesion of undetermined significance (FLUS) renders it difficult to classify the risk as benign, suspicious, or malignant. In the present study, we assessed whether patients’ preoperative demographic, radiological, and biochemical characteristics can predict the postoperative pathological diagnosis in patients with AUS/FLUS.

Methods: Retrospective review of patients with AUS/FLUS who underwent surgery over a six-year period was conducted. The primary outcome was prediction of the malignant potential of AUS/FLUS nodules based on demographic data, thyroid imaging reporting and data system (TIRADS) score, and thyroglobulin (Tg) level.

Results: Fifty-one cases were identified with a mean age of 40 ± 12 years and 36 (70.6%) were female. The final pathological diagnosis of malignancy was seen in 29 patients (56.9%). Patients with malignancy had a higher Tg level and TIRADS points (154 ± 167 vs. 463 ±733 µg/L, p = 0.0352 and 3.3 ± 1.4 vs. 5.9 ± 2.7, p = 0.0001, respectively). The final diagnosis did not differ by patient demographics (age and gender).

Conclusion: AUS/FLUS nodules in patients with high Tg level and TIRADS score showed a higher risk of malignancy, which was observed in nearly 50% of the patients in this retrospective study. Therefore, preoperative Tg and high TIRADS score could be useful in malignancy-risk stratification in thyroid nodules with indeterminate cytology. Further prospective multicenter studies that may throw light on this common endocrine cancer among Saudis and specifically among women, are needed to confirm our findings.

Abbreviations: ACR: American College of Radiology; ATA: American Thyroid Association; AUS: Atypia of Undetermined Significance; BSRTC: Bethesda System for Reporting Thyroid Cytopathology; FLUS: Follicular Lesion of Undetermined Significance; FNAB: Fine-Needle Aspiration Biopsy; FNAC: Fine-Needle Aspiration Cytology; KFSH&RC: King Faisal Specialist Hospital & Research Center; PTC: Papillary Thyroid Cancer; TIRADS: Thyroid Imaging Reporting and Data System; US: Ultrasound

Introduction

Thyroid cancer is the most common endocrine cancer worldwide [1], and in Saudi Arabia [2,3], where it accounts for approximately 9% of all malignancies and 12% of female malignant cancers [4]. Thyroid cancer is considered the second most common cancer among Saudi women, and the fourth among Saudi men [4]. Thyroid nodules are the most common presentation of thyroid cancer [5]. However, thyroid nodules are highly prevalent, accounting for 20%-76% in the general population [6]. Since therapeutic management of malignant nodules is different from that of benign nodules, it is vital to distinguish the two [5,6].

The Thyroid Imaging, Reporting, and Data System (TIRADS) published by the American College of Radiology (ACR) in 2015 is an ultrasonographic, risk-stratification system in which the nodules are scored for cancer risk based on composition, echogenicity, shape, margin, and echogenic foci by ultrasound (US) [7] and assigned to one of five malignancy-risk groups; reported cancer risks of 0.3% (TR1-benign), 1.5% (minimally suspicious-TR2), 4.8% (mildly suspicious-TR3), 5%-20% (moderately suspicious-TR4) and 35% (highly suspicious-TR5) [7].

In addition, the 2015 American Thyroid Association (ATA) Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer, reinforced the importance of the

*Correspondence to: Amal Alhefdhi, Department of General Surgery, Breast and Endocrine Section, King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia, Tel: +966 11 4427755, Fax: +966 11 4427772; E-mail: alhefdhi@kfshrc.edu.sa

Key words: thyroid imaging, follicular lesion, malignancy risk, thyroid nodules

Received: April 03, 2020; Accepted: April 20, 2020; Published: April 24, 2020
Can preoperative serum thyroglobulin and anti-thyroglobulin levels predict malignant potential of a thyroid nodule with atypia or follicular lesion of undetermined significance?

Methods

This study was approved by the Office of Research Affairs at King Faisal Specialist Hospital & Research Center (KFSH&RC), Riyadh, Saudi Arabia. Institutional review board approval number 2161182. Between 2011 and 2016, adult patients with primary diagnosis of thyroid cancer in the final pathology, and were distributed as

Gender

<table>
<thead>
<tr>
<th></th>
<th>Age (years)</th>
<th></th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>41 ± 11</td>
<td>40 ± 14</td>
<td>0.7523</td>
</tr>
<tr>
<td>F</td>
<td>36 ± 19</td>
<td>29 ± 13</td>
<td>0.6949</td>
</tr>
</tbody>
</table>

Genetic testing of the thyroid fine-needle aspiration biopsy (FNAB) detects malignancy in patients with AUS/FLUS with high sensitivity and specificity [8,13,14]. Since all tertiary hospitals do not provide this genetic testing, the need for an alternative method is warranted. This study aims to describe the correlation between preoperative demographic data, radiological characteristics required for identifying TIRADS-based malignancy-risk groups, biochemical characterization of Tg and anti-Tg antibody and final postoperative pathological diagnosis among patients with AUS/FLUS.

Results

In this retrospective analysis, we screened 161 cases of AUS/FLUS. After applying the inclusion and exclusion criteria, 51 cases met our study criteria in which the patients had documented preoperative serum Tg, TgAb, and TSH levels. Patients' mean age was 40 ± 12 years. In general, the final pathological diagnosis of malignancy was noted in 29 patients (56.9%), while the remaining (43.1%) were benign. Females (n = 36) comprised 71% of the total. Though malignancy rate (73.3%) was higher among males, it was not statistically significant (p = 0.2142). Patient demographic characteristics did not differ by tumour status (Table 1).

The mean serum Tg and TgAb levels were 330 ± 580 µg/L and 153 ± 583 U/ml retrospectively, while the mean TSH level was 1.84 ± 1.2 mU/L. The mean serum Tg was significantly higher among patients with malignancy compared with patients with benign tumours (463 ± 733 µg/L vs. 154 ± 167 µg/L; p = 0.035 respectively). The mean TgAb and TSH did not differ by tumour status (Table 1).

Of the 51 patients, 49 had available US images that were re-examined by a radiologist using the TIRADS score. Reports for two cases were unavailable. The TIRADS points were higher among patients with malignancy compared with those with benign tumours (5.9 ± 2.7 vs. 3.3 ± 1.4; p = 0.0001 respectively). The mean size of the largest thyroid nodule was 38 ± 24 mm, but the mean size of the nodule did not differ by tumour status (Table 1).

There were 46 (90.2%) cases with TIRADS ≥ 3, of which 27 (52.9%) had thyroid cancer in the final pathology, and were distributed as

Table 1. Characteristics of patients with AUS/FLUS by tumour status

<table>
<thead>
<tr>
<th></th>
<th>N = 51</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>Benign</td>
<td>N = 22</td>
<td>Malignant</td>
<td>N = 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>41 ± 11</td>
<td>40 ± 14</td>
<td>0.7523</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15 (29.4%)</td>
<td>4 (27.7%)</td>
<td>11 (73.3%)</td>
<td>0.2142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>36 (70.6%)</td>
<td>18 (50%)</td>
<td>18 (50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH (mU/L)</td>
<td>1.95 ± 1.4</td>
<td>1.75 ± 1.3</td>
<td>0.5644</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tg level (µg/L)</td>
<td>154 ± 167</td>
<td>463 ± 733</td>
<td>0.0352</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TgAb (U/ml)</td>
<td>93 ± 197</td>
<td>199 ± 757</td>
<td>0.4758</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US size biggest nodule (mm)</td>
<td>20 ± 20</td>
<td>40 ± 26</td>
<td>0.6949</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall TIRADS Points</td>
<td>3.3 ± 1.4</td>
<td>5.9 ± 2.7</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
follows: 23 cases with TIRADS 3 of which nine (39%) had thyroid cancer (four follicular cancer and five papillary thyroid cancer (PTC); two with follicular variant); 12 cases with TIRADS 4 of which eight (66.7%) had thyroid cancer (two with follicular cancer and six with PTC; three with follicular variant); 11 cases with TIRADS 5 of which 10 (90.9%) had thyroid cancer (two with follicular cancer and eight with PTC; one with follicular variant). This is shown in table 2 and graphically depicted in figure 1.

Discussion and conclusion

Examination of the correlation between preoperative demographic data, radiological characteristics required for identifying TIRADS-based malignancy-risk groups, biochemical characterization of Tg and anti-Tg antibody and final postoperative pathological diagnosis among patients with AUS/FLUS showed that AUS/FLUS nodules in patients with high Tg level and TIRADS score showed a higher risk of malignancy, which was observed in nearly 50% of the patients in this retrospective study.

Age and gender were not significant variables influencing the differences between benign and malignant groups in this study, and are in line with previous studies [18,19]. However, the risk of malignancy of 56.9% was higher than most published studies, which ranged from 13.5% to 43% [11,20,21], but is in concordance with a recent study, which found a 58.1% rate of malignancy in AUS/FLUS nodules [18].

We found higher preoperative serum levels of Tg among patients with thyroid malignancy, suggesting that higher Tg level could increase the risk of malignancy. This finding was in concordance with Sands et al. [22] who reported that high presurgical serum Tg levels may be predictive of well-differentiated thyroid cancer, thereby aiding in the management of nodules with indeterminate cytology. Further, Besic and Besic stated that preoperative Tg and gender were independent predictors of malignancy in follicular or Hürthle cell neoplasms [23].

Petric et al. [24] reported that patient age, solitary tumour, and preoperative serum level of Tg were independent predictors of malignancy in follicular neoplasms. Strazisar et al. [25] reported that patient age and preoperative serum level of Tg were independent predictors of malignancy in Hürthle cell neoplasms. In a systematic review of 13 studies, with 9 that focused on thyroid nodules with indeterminate cytology, found a significance difference between benign and malignant nodules in association with mean or median serum preoperative Tg level [12]. Therefore, we concluded Tg to be an independent predictor of thyroid cancer, particularly with indeterminate cytology [12].

Though we could not detect a significant difference in the preoperative serum level of TgAb between benign and malignant groups, Karatzas et al. [26] found that in thyroid nodules with indeterminate cytology, there was a significant correlation between the TgAb and PTC (P < 0.001). Hosseini et al. [27] found that high TgAb level (≥ 30 IU/ml) may increase the risk of malignancy. On the contrary, Kim et al. [28] reported that a positive TgAb test is an independent predictor of thyroid nodule malignancy along with TSH results, regardless of autoimmune thyroiditis. In contrast, Yalcin et al. [29] and Yazici et al. [30] found that high preoperative serum levels of serum Tg, anti-TPO, and TgAb, and high preoperative serum TSH levels were not predictive in thyroid cancer.

All patients with AUS/FLUS in our study with a thyroid malignancy had TIRADS 3 or more, and subsequently higher overall TIRADS points increase the risk of malignancy, which was implied from the risk of malignancy in TIRADS 3 (39%), 4 (66.7%), and 5 (90.9%), which is in agreement with the reported risks of cancer for the same category: 5%, 50%-80%, and >80%, respectively [17], with the caveat that these rates were based on the risk of malignancy using the TIRADS score in general. In this study, the TIRADS score was used only for AUS/FLUS group.

A previous report showed that US variables and TIRADS categories did not differ between benign and malignant nodules or between malignancies with one and two AUS/FLUS nodules [18], Park et al. [18] assessed the rate of malignancy and characteristics of thyroid nodules in 31 patients with AUS/FLUS and found a high (58.1%) rate of malignancy with no differences between the benign and malignant nodules in demographic or US characteristics.

Thus, AUS/FLUS nodules in patients with high Tg level and TIRADS score showed a higher risk of malignancy. This study is not without its limitations. The retrospective nature of the study and the small sample size limit the generalizability of our findings. Thus, we use it as a pilot study, and we are considering a prospective multicentre clinical study to confirm our findings.

In conclusion, elevated preoperative Tg and high TIRADS score could be useful in malignancy-risk stratification in thyroid nodules with indeterminate cytology. The limitations of this study can be overcome by pursuing prospective multicentre studies that may throw light on this common endocrine cancer among Saudis and specifically among women.
Acknowledgment

We thank Mr. Abdelmoneim M. Eldali, MSc. (King Faisal Specialist Hospital, Research Centre, Department of Biostatistics, Epidemiology and Scientific Computing) for his assistance in conducting the statistical analysis for this study.

References

5. Weiss VL, Andretti RF, Ely KA (2018) Use of the thyroid imaging, reporting, and data system (TIRADS) scoring system for the evaluation of subcentimeter thyroid nodules. Cancer Cytopathol 126: 518-524. [Crossref]
7. Middleton WD, Teeley SA, Reading CC, Langer JE, Beland MD, et al. (2017) Multinstitutional analysis of thyroid nodule risk stratification using the American College of Radiology Thyroid Imaging Reporting and Data System. AJR Am J Roentgenol 208: 1331-1341. [Crossref]
8. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, et al. (2016) 2015 American Thyroid Association management guidelines for adults with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26: 1-133. [Crossref]
17. Vargas-Uricoechea H, Meza-Cabrera I, Herrera-Chaparro J (2017) Concordance between the TIRADS ultrasound criteria and the BETHESDA cytology criteria on the non恶性 thyroid nodule. Thyroid Res 10: 1. [Crossref]
18. Park Y, Kim EK, Kwak JY, Yoon JH, Moon HJ (2015) Malignancy risk and characteristics of thyroid nodules with two consecutive results of atypia of undetermined significance or follicular lesion of undetermined significance on cytology. Eur Radiol 25: 2601-2607. [Crossref]
20. VanderLaan PA, Marqusee E, Krane JF (2011) Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: should repeated fna be the preferred initial approach? Am J Clin Pathol 135: 770-775. [Crossref]
23. Besic H, Besic N (2014) Preoperative serum thyroglobulin concentration as a predictive factor of malignancy in small follicular and Hurthle cell neoplasms of the thyroid gland. World J Surg Oncol 12: 282. [Crossref]
28. Kim ES, Lim DJ, Baek HK, Lee JM, Kim MK, et al. (2010) Thyroglobulin antibody is associated with increased cancer risk in thyroid nodules. Thyroid 20: 885-891. [Crossref]
30. Yazici P, Mihmanli M, Bozkurt E, Ozturk FY, Uldag M (2016) Which is the best predictor of thyroid cancer: thyrotropin, thyroglobulin or their ratio? Hormones 15: 256-263. [Crossref]