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Abstract
Objective: Nodal disease (N+) for early-stage oral squamous cell carcinoma (OSCC) is the most significant prognostic factor for survival. There is a lack of effective 
predictor to justify prophylactic neck dissection. Quantitative tissue pathology (QTP) has shown its promise in providing an objective means for diagnosis and 
prognosis of many cancer types. We conducted a pilot study on the utilization of QTP to evaluate risk of nodal disease. 

Study design: Retrospective case-control study

Subjects and methods: Histological sections from 15 primary tumors of clinically node-negative (N0) patients were stained with Feulgen-Thionin followed by 
acquisition of digital images and image processing to measure the mean and variance of nuclear phenotype and tissue architecture features from 45,253 nuclei of 
45 tumor nests. Association between features and nodal disease outcome (N0 or N+) was investigated using nested analysis of variance adjusted by patient. Ability 
to discriminate between N0 and N+ was analyzed using multivariate logistic regression and receiver operating characteristics (ROC) curve analysis. P-value<0.05 
(2-sided) was considered significant.

Results: The N+ group presented higher mean values of chromatin condensation levels and cell density compared to those of the N0 group. ROC curve showed a 
strong discriminative ability of chromatin condensation levels between the N+ and N0 groups with a sensitivity and specificity of 1.0 and 0.75, respectively. 

Conclusion: This study reports the first-ever data on QTP as a risk assessment tool for nodal disease in early-stage OSCCs. Such computational imaging analysis 
potentially provides a new objective approach to predict regional nodal disease.
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Introduction
For patients with primary oral squamous cell carcinoma (OSCC) the 

most significant prognostic factor is the spreading of tumor to lymph 
nodes of the neck where the presence of tumor in any single node can 
reduce survival by 45-50% [1-3]. Thus, all neck nodes must be clinically 
assessed prior to treatment planning. For clinically node-negative 
(cN0) patients, most clinicians advocate elective neck dissection (END) 
to minimize the chance of tumour spread [4]. However, to avoid over-
treating ~75% patients who would never develop nodal disease, some 
clinicians prefer to wait and dissect only when nodal disease actually 
occurs; and for tumors that eventually metastasize, patients may miss 
the window of early intervention leading to under-treatment or death. 
The decision on how to manage neck nodes remains controversial. In 
current practice, the decision of END is most often based on indicators 
from histological descriptions of the surgical samples. However, this 
pathology interpretation can be subjective and may often lead to over 
treatment [5,6]. In our population-based retrospective study, we found 
that the tumor depth of invasion (DOI), a commonly used marker for 
the justification of END, is a poor indicator of nodal disease for early-
stage cN0 OSCCs [7]. To avoid over treating those who will not develop 
nodal disease or under treating those who will benefit from early 
intervention, effective markers are urgently needed for the prediction 
of lymph node status for cN0 OSCC patients. 

Quantitative tissue phenotyping (QTP) by computational image 
analysis has become a novel emerging means of obtaining objective 
information concerning diagnosis and prognosis of many cancer types 

[8-13]. During carcinogenesis, squamous cells go through progressive 
changes in appearance due to accumulation of genetic and epigenetic 
alterations, making them phenotypically different from normal cells. 
In our previous study, Guillaud et al. developed a scoring system 
(nuclear phenotype score, NPS) for premalignant lesions on cancer 
progression by recognizing nuclear phenotype that are distinctively 
different between normal, mild/moderate dysplasia, severe dysplasia/
carcinoma in situ, or SCC [14]. We have also used this technique to 
assess surgical margins to predict the chance of recurrence [15]. In this 
case control study, we aim to use QTP to measure NPS of tumor nests 
of primary OSCC tumors of cN0 patients to investigate its potential to 
predict nodal status during follow-up. 

Materials and methods
Patient and surgical specimen

From patients enrolled in the Canadian Optically-guided approach 
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for Oral Lesions Surgical (COOLs) Trial [7,16,17],  we identified 15 
who had no previous history of OSCC, received surgical excision with 
curative intent, and were periodically followed up with thoroughly 
annotated information on demographics, clinic-pathological tumor 
characteristics, and clinical outcome on survival or nodal disease. The 
average age was 58.7±11.9 years and the male to female ratio was 1:1. 
Of the 15 patients, 8 remained N0 with a median follow-up time of 
4.1 years, and 7 were found to be N+ after surgery or during follow-
up. There was no difference in clinical or pathological attributes of the 
primary tumors between the two groups (Table 1).

Two serial sections (4-µm thickness) from formalin-fixed paraffin-
embedded (FFPE) primary tumors were obtained, one was stained 
with Hematoxylin and Eosin (HE) for visualizing cell type and tissue 
structure, and the other one was stained with Feulgen-Thionin (FT) 
(Figure 1A and 1B, respectively), using previously described protocol 
[18], for nuclear content. 

Image acquisition, segmentation and processing

Stained H&E slides were imaged at 20X magnification with 
Pannoramic MIDI© and reviewed on Pannoramic Viewer© 
(3DHISTECH Ltd., Budapest, Hungary). Stained FT slides were 
imaged at 5 focal-planes every 500 µm using a modified version of 
our Cyto-Savant™ imaging system with bright-field microscopy (600 
± 5 nm illumination) and a charge-coupled digital camera which had 
a resolution of 1280 by 1024 (0.8 numerical aperture, effective pixel 

spacing in the sample plane was 0.27µm) [18]. 

Once digitized images were obtained, each pair of HE and FT 
images was put through an image analysis pipeline involving the 
following steps. First, an experienced pathologist (CFP) identified and 
demarcated tumor nests, the region of interests (ROIs), by drawing 
around the nest border on the HE images and matched the same ROIs 
on the FT images. Second, the best in-focus FT-stained image of each 
nucleus within each ROI was automatically selected and segmented 
using the DUnit Program© (Integrative Oncology, BC Cancer Agency, 
Vancouver, Canada) [14,19] (Figure 1C). Third, all segmented nuclei 
were manually evaluated and filtered to exclude: nuclei that were not 
squamous epithelial cells (granulocytes, lymphocytes, or fibroblasts); 
and ‘unacceptable’ nuclei that were overlapping with neighboring 
nuclei, incorrectly segmented, or out of focus. In the end, only nuclei of 
cancerous squamous cells were used for analysis.

QTP feature extraction

The DUnit program© automatically calculates 104 nuclear 
phenotype features and 16 tissue architectural features [20]. Nuclear 
phenotype features describe morphology, including the size, shape, and 
boundary variation of a nucleus based on the number of pixels (1 pixel = 
0.116µm2) occupied by a nucleus; photometric based optical density for 
each pixel and chromatin texture evaluated using in fractal dimension 
calculations, Run_length, Markovian, and discrete texture features 
for each segmented nucleus. Tissue architecture was computed by 
constructing a Voronoi tessellation and Delaunay Triangulation, using 
the centers of gravity of the nuclei as seeds. Together, they measure the 
spatial distribution of cells and the distance between neighbouring cells 
thus portraying tissue organization. Mean and standard deviation of 
each feature was calculated within each ROI. The complete list of 120 
features is given in Appendix Table 1. 

Layering of tumor nests as ROI

In addition to investigating each tumor nest as a unit, we also 

Variables Total (N=15) N0 (N=8, 53%) N+ (N=7, 
47%)

P

Age (years), mean ± SD 58.7 ± 11.9 63.1 53.3 0.15
Age group 0.26

<45 2 (13) 2 (29)
45-65 10 (67) 6 (75) 4 (57)
>65 3 (20) 2 (25) 1 (14)

Gender 1.0
Male 5 (33) 3 (37) 2 (29)
Female 10 (67) 5 (63) 5 (71)

Smoking 0.75
Never 9 (60) 4 (50) 5 (71)
Ever 6 (40) 4 (50) 2 (29)

Lesion site 1.0
Buccal Mucosa 1 (7) 1 (12)
Tongue / FOM 14 (93) 7 (88) 7 (100)

Tumor Grade 0.13
I 3 (20) 2 (29)
II 11 (73) 6 (75) 4 (57)
III 1 (7) 2 (25) 1 (14)

DOI (mm), mean ± SD 6.1 ± 3.6 6.4 ± 4.5 6.7 ± 3.3 0.89
DOI of 4 mm 1.0

< 4 mm 2 (13) 1 (13) 1 (14)
≥ 4 mm 13 (87) 7 (87) 6 (86)

Survival status 1.0
Alive 11 (73) 6 (75) 5 (71)
Dead due to any 
cause

1 (7) 1 (14)

Dead due to 
OSCC

3 (20) 2 (25) 1 (14)

Years of follow-up, median 
(1st-3rd quartile)

4.1 (2.8-5.0) 41 (3.3-4.7) 4.5 (2.3-5.0) 0.96

N0 (node-negative); N+ (node-positive); FOM (floor of mouth); DOI (depth of invasion); 
OSCC (oral squamous cell carcinoma)

Table 1. Patient demographics and clinic-pathological characteristics of primary tumors.
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Figure 1. Example of a tumor nest in QTP analysis. (A) A tumor nest stained with 
Hematoxylin & Eosin (H&E), (B) Feulgen Thionin (FT), and (C) an image (gray level) 
of the FT stain. (D). Subsequent segmentation generates Voronoi tessellation which 
constituted polygons in an arrangement of layers (e.g., a total of 11 layers for this nest). 
Polygons touching the nest outer boundary are depicted as Layer#1 (blue); Layer#2 
(green) is made of polygons of immediate neighbors inner to Layer#1; and Layer#3 (red) 
is made of polygons of immediate inner neighbors touching Layer#2. Successive layers 
are incrementally calculated until there is no polygon left to be accounted for. (E) is the 
simplified cartoon of (D) to demonstrate layers and nest boundary (dashed line).
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performed layer-based analysis [21]. By generating a Voronoi 
tessellation, which geometrically partitions each nest into regions 
based on the positions of the nuclei, we generated successive layers 
for each nest in the following manner. All nuclei whose corresponding 
Voronoi polygons touched the nest border were assigned to Layer#1 
(the “outermost layer”); Layer#2 consisted nuclei which were not in 
Layer#1 and had a Voronoi neighbour in Layer#1; Layer#3 consisted 
nuclei which were not in Layer#1 or Layer#2 and had an neighbour 
in Layer#2. Higher number layers were defined similarly (Figure 1D 
and 1F). We combined each layer with its subsequent layer for the 
purpose of obtaining more representative measurements considering: 
1) the possibility that these tumor nests are tangentially sectioned and 
that a segmented nucleus from a 2-dimension image gives only partial 
phenotypic information of a whole nucleus; and 2) the less abundant 
well-segmented nuclei in the layers. For example, we treated Layer#1 
and Layer#2 or Layer#2 and Layer#3 as a single ROIs (Layer#1-2 or 
Layer#2-3) by adding the nuclei from the 2 individual layers. 

Statistical analysis

Each feature was compared between the N0 and N+ groups, with 
adjustment for patient-tumor nest effect by performing nested analysis 
of variance (nANOVA) tests. Distribution of each feature was illustrated 
by box-and-whisker plots for the two groups. For evaluating the ability 

of each feature in discriminating ROIs into the correct nodal status 
group, we first performed a forward stepwise linear discrimination 
process to select the feature(s) with the highest discriminative power. 
Due to the relatively large number of variables and small number of 
ROIs, we stopped the selection process at maximum of two features to 
avoid over fitting. Selected feature(s) were then tested for classification 
performance analysis by receiver operating characteristic (ROC) curve, 
with area under the curve (AUC) as a representation the predictability 
for nodal status. For combinations of two selected features, a fitted 
probability of being N+ based on the model and features was computed. 
A threshold value with the highest sum of sensitivity and specificity 
was then calculated. All statistical analysis and plots were produced 
using R software (v3.2.3). As these were single variable and unpaired 
comparisons, all P values were uncorrected with P<0.05 considered to 
be statistically significant. 

Results
A total of 45 tumor nests were identified with 23 (51%) from N0 

and 22 (49%) from N+ groups (Table 2). These nests composed of 
410 layers (N0, n=199; N+, n=211) and 45,253 segmented nuclei that 
were included for calculation of QTP features. There was no difference 
in the average number and pixel areas of the tumor nest per patient, 
the average number of layers per nest, or the average nuclei per nest 
between the two nodal status groups (Table 2).

  
 

   
 Figure 2. Box-and-whisker plots of nuclear phenotype features between N0 and N+ tumor nests.

Top row, left to right: Hi_av_dstMean (P=0.04), High_den_objMean (P=0.01), High_den_objStdv (P=0.04). Bottom row, left to right: Lowvshgh_dnaMean (P=0.02), Lowvsmed_dnaMe-
an (P=0.003), Lowvsmh_dnaStdv (P=0.04). The horizontal line within the box indicates the median, the boundaries of the box (bottom and top) indicate the 1st and 3rd quartile, and the 
whiskers indicating the lowest and highest values.
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Association between QTP feature and lymph node status

Tumor nests as ROIs: Among the 104 nuclear phenotypic features, 
6 discrete chromatin texture features were significantly different 
between the two groups; they all indicate a significant higher fraction 
of high or medium condensation level of chromatin regions in the N+ 
group (Table 3 and Figure 2). 

Eight tissue architecture features also showed significant differences 
between N0 and N+ groups (Table 3 and Figure 3). The N+ group had 
smaller nest area and circumference (VorAreaMean, VorPeriMean; 
P<0.05), and shorter distance between neighbours (DelNeaNeiMean, 
Del3NeiDistMean, P<0.05); collectively, these described smaller tumor 
nests and more densely packed cell nuclei (P=0.01).

Combined tumor nest layers as ROIs: In Layer#1-2, the N+ group 
exhibited significantly higher fraction of medium and high density 
chromatin condensation states (Lowvsmed_dnaMean, P<0.001; 
Lowvshigh_dnaMean, P=0.03). There was also higher value in 
dispersion of chromatin of high condensation state in the N+ group 
(High_den_objMean, P=0.003) (Figure 4A).

In Layer #2-3, a similar observation was also seen where the N+ 
group had higher fraction of medium-density chromatin region 

   

    
Figure 3. Box-and-whisker plots of tissue architecture features between N0 and N+ tumor nests
Top row, left to right: Del3NeiDistMean (P=0.04), Del3NeiDstStdv (P=0.007), DelNeaNeiMean (P=0.03), DelNeaNeiStdv (P=0.008). Bottom row, left to right: Density (P=0.01), 
VorAreaMean (P=0.02), VorAreaStdv (P=0.007), VorPeriStdv (P=0.008). The horizontal line within the box indicates the median, the boundaries of the box (bottom and top) indicate the 1st 
and 3rd quartile, and the whiskers indicating the lowest and highest values.

Patient 15 N0, 7 N+, 8 P
Tumor nest (%) 45 23 (51) 22 (49)
    Tumor nest per patient 3 2.9 3.1
    Tumor nest area 
     (pixel area, µm2 ± SD)

191,944.6 ± 
256,088

238,211.3 ± 
312,791.3

143,574.9 ± 
173,536.8 0.22

Layers 410 199 211 0.54
     Layers per nest 9.6 10.6
Cell nuclei 45,253 22,996 22,257 0.97
     Cell nuclei per nest 999.8 1011.7

Abbreviation: N0, node-negative; N+, node-positive; SD, standard deviation 

Table 2. Tumor nests, layers, and cell nuclei and their lymph node status.

QTP Category QTP Sub-category Feature Name P
Nuclear Phenotype (6)
Chromatin Texture Discrete Texture Hi_av_dstMean 0.04 
Chromatin Texture Discrete Texture High_den_objMean 0.01 
Chromatin Texture Discrete Texture High_den_objStdv 0.04 
Chromatin Texture Discrete Texture Lowvshigh_dnaMean 0.02 
Chromatin Texture Discrete Texture Lowvsmed_dnaMean 0.003
Chromatin Texture Discrete Texture Lowvsmh_dnaStdv 0.04 
Tissue Architecture (8)
Delaunay Triangulation Del3NeiDistMean 0.04 
Delaunay Triangulation Del3NeiDistStdv 0.007
Delaunay Triangulation DelNeaNeiMean 0.03 
Delaunay Triangulation DelNeaNeiStdv 0.008
Voronoi tessellation VorAreaMean 0.02
Voronoi tessellation VorAreaStdv 0.007
Voronoi tessellation VorPeriStdv 0.008
Voronoi tessellation & Delaunay 
Triangulation

Density 0.01

Table 3. QTP features of significant difference between N0 and N+ tumor nests.

(Figure 4B). We also observed higher average values in run_length 
features which describe the size of chromatin clumps where the larger 
the run_length values, the bigger the clumps and vice versa.

Discriminative ability on nodal status

The observed differences in the features described above provided 
initial data supporting QTP analysis for differentiating N+ from N0. 
Thus, we next investigated whether these 120 features can be used 
to predict N+ status. Linear discrimination analysis with forward 
stepwise selection procedure was performed to determine feature(s) 
that achieved the best discriminatione between the two groups among 
a) tumor nests and b) combined layers. 

For both types of ROIs, feature selection from within the 120 
features consistently isolated Lowvsmed_dnaMean as the most 
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a. Layer#1-2 

   

   

b. Layer#2-3 

   
 Figure 4. Box-and-whisker plots of nuclear phenotype features among combined layers.

a. Layer#1-2, top row, left to right: Lowvsmed_dnaMean (P<0.001), Lowvshigh_dnaMean (P=0.03), High_den_objMean (P=0.004); High_den_objStdv (P=0.02); bottom row, left to right: 
Run_length1Mean (P<0.01) and Run_length2Mean (P=0.03). b. Layer#2-3, left to right: Lowvsmed_dnaMean (P=0.01) and High_den_objMean (P=0.02). The horizontal line within the box 
indicates the median, the boundaries of the box (bottom and top) indicate the 1st and 3rd quartile, and the whiskers indicating the lowest and highest values.  

independent discriminative feature. For tumor nests, combination 
of Lowvsmed_dnaMean and VorPeriStdv gave an AUC of 85%. The 
threshold value of fitted probability based on the model on selected 
features was 0.41 with sensitivity of 82% and specificity of 78%. 
Combined Layer#1-2 showed the highest AUC of 94% (Figure 5) when 
the combination of Lowvsmed_dnaMean and Mh_av_dstStdv features 
were used with threshold value of fitted probability of 0.28 achieving a 
sensitivity of 100% and specificity of 75%. 

Discussion
Assessment and judgement of risk for nodal metastasis has always 

been a challenge for clinicians when facing cN0 OSCC patients. With 
its robust and objective nature, we report the first-ever use of QTP 

for quantitative analysis of tumour nests for predicting nodal disease. 
Comparison of QTP features between the two groups highlighted a 
reoccurring theme where the N+ nests demonstrated a higher ratio 
of medium to low condensation regions of chromatin and high cell 
density.

Nuclear chromatin alteration has been extensively studied as one of 
the regulators for genomic activity and functions which lead to aberrant 
chromatin remodeling that is seen in many human diseases and cancers 
[12,22-24]. During normal cell cycle, the chromatin de-condenses and 
becomes loosely packed euchromatin, exposing DNA and allowing 
gene activity and transcription. When activity is not needed, chromatin 
becomes tightly packed condensed heterochromatin. Taken together, 
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changes in condensation states of chromatin occur throughout cell 
division. Therefore, it could be hypothesized that the observed higher 
fraction of medium-condensed chromatin reflects higher proliferation 
activity in N+ tumor cells.

The intention for studying and comparing nest layers was motivated 
by the increasing evidence on the role of tumor microenvironment in 
initiation, growth, and spread of tumor. Our study also found that 
medium-to-low condensation ratio was significantly higher in nuclei 
of the outer layers of N+ tumor nests than that of the N0 group. Tumor 
nests are bordered by a well-defined boundary; and immediately inside 
this boundary are most likely where proliferative tumor cells reside. 
Indeed, the progression to cancer and metastasis require not only 
genomic and morphological changes but also cascades of events and 
responses with local microenvironment leading to loss of polarity, 
disruption in epithelial compartment, invasion, and angiogenesis [25-
28]. This particular finding could indicate an interaction of these outer 
layer cells with tumor microenvironment which may play important 
roles in nodal metastasis. The current QTP system has the capacity 
to analyze in situ-stained specimens. From this point and moving 
forward, we plan to integrate tumor QTP features with profiles of 
surrounding stromal cells, including inflammatory cell types, especially 
for areas at the invasive front. This may help us explain the higher state 
of chromatin condensation seen in N+ group as well as elucidate the 
possible anti-cancer or pro-cancer interaction between the N+ and 
tumor microenvironment. 

Regarding the tissue architecture of these tumor nests, we 
observed a strong correlation between cell density and nodal status, 
as characterized by smaller Voronoi polygon area and shorter 
distance between neighbour nuclei. From this, we attempted to 
infer NC (nucleus-cytoplasm) ratio, a measure commonly used in 

the conventional pathology, by associating cytoplasmic area with 
Voronoi polygon area. In normal cells, the nuclei size decrease as the 
cell matures; thus the NC ratio decreases as well. This suggests that an 
increased NC ratio in matured cells indicate atypical growth pattern 
which is the general observation in premalignant or malignant cells 
[29]. In our pilot cohort, the average nuclear area did not differ between 
N+ and N0 groups; however, the average polygon area measured was 
significantly smaller in N+ group. If we take the N0 group as the 
reference, i.e., set the reference NC ratio to 1, to indicate non-metastatic 
potential, a smaller cytoplasm area with the same nuclear area would 
mean a larger NC ratio. Analogously, we can suggest that NC ratio of 
the outermost layers may be associated with nodal status. Indeed, we 
observed N+ group had an increase in NC ratio, but the difference was 
not significant (P=0.11). 

In addition, fractal dimension (FD), which measures the extent of 
irregularity and complexity in nuclear structure has been associated 
with malignant, less differentiated tumors, and poor prognosis in 
many cancer types [10,30-34]. Although there was no difference 
in FD between N0 and N+ groups, we observed a higher mean of 
FD in nuclei of poorly differentiated tumors. Thus, this feature may 
potentially be used to compensate the subjectivity in determining 
tumor differentiation which could be associated with nodal disease 
outcome. 

The most important finding of our study is however, the value of 
QTP analysis as a predictive and risk assessment aid in pathology. Two 
features, both describing chromatin texture, demonstrated outstanding 
ability discriminating N+ from N0 nest layers with AUC of 94%. This 
is much better compared to using the combination of differentiation 
and DOI,[7] which has shown 63% of AUC with 67% specificity and 
54% sensitivity. 

This pilot study is limited by the small number of patients included. 
Although there was no difference in demographics and clinic-
pathological characteristics, the observed association and the predictive 
ability of QTP features requires further validation in a larger sample 
size cohort with prospective recruitment, such as the COOLS study 
[16]. Nevertheless, despite the small number of patients, the number 
of tumor nuclei and layers of tumor nests are enough for meaningful 
statistical results. 

In conclusion, the results of our study encourage the potential 
value of bringing computational imaging analysis as an adjunct tool for 
pathologists in assessing patients who may be at high risk of developing 
nodal disease. Additional studies are warranted with increased number 
of patients to corroborate the findings provided in this work. 
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