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Abstract
Patients with medically intractable epilepsy are candidates for surgical treatment. The main goals of treatment consist in the ablation of epileptogenic areas, surgical 
sectioning of the corpus callosum in order to avoid interhemispheric transmission of epileptic electrical activity and stimulation of brain areas capable of inducing 
inhibition of epileptic activity. Another alternative is the injury of structures such as the dentate nucleus of the cerebellum, which has shown beneficial effects in 
patients. However, most of these surgical treatments involve healthy brain areas and implicate excessive costs. In this review we discuss previous works that describe 
surgical techniques and their main post-surgical complications.
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Epilepsy, a clinical entity still unsolved
Epilepsy is a disorder affecting more than 1% of the general 

population [1]. Patients with this neurological condition present 
different types of injuries associated with epileptic activity, the most 
common include bruises, cuts, burns and falls. Some patients have 
more serious injuries such as fractures, concussions, head injuries with 
intracerebral haemorrhage or breathing problems. These are usually 
seen in people who have generalized seizures with falls, prolonged 
seizures, or repeated seizures [2].  In addition, patients may lose days 
of work due to seizures; others may face the adversity of costs and 
economic effects of antiepileptic drugs (AEDs) and comorbidity [3]. 
Epilepsy contributes to 0.5% of disability-adjusted life-years (DALYs) 
due to all diseases and injuries [4].

Despite the introduction of many AEDs over the past three 
decades, 30–40% of people with epilepsy who have access to such 
medications still have seizures not completely controlled by these AEDs 
[4]. Compared to individuals with controlled epilepsy, individuals 
with drug-resistant epilepsy have a significant impairment in their 
quality of life. Drug-resistant epilepsy is defined by the International 
League Against Epilepsy (ILAE) as the failure of adequate trials of two 
tolerated, appropriately chosen and used antiepileptic drug schedules 
(whether as monotherapies or in combination) to achieve sustained 
seizure freedom [5].

Patients with epilepsy may suffer increased morbidity and a higher 
rate of mortality [6], social isolation, dependent behaviour, as well as 
neuropsychological and neurocognitive issues [7,8]. Unfortunately, a 
pharmacological treatment to relieve patients is not always the answer. 

Thus, it is estimated that one-quarter of people with refractory 
seizures can be potential candidates for surgical therapy. However, 
reports indicate that only 60–90% of patients receiving surgical 
treatments can expect to become free of disabling seizures [9]. Normally 
the severity and frequency of seizures decrease, but they are not always 
seizure free. This being said, it is necessary to search for new alternatives 
for an effective treatment. The ideal treatment would be one that 
reduces the risk of memory, language and visual impairments, among 
other complications, that arise after conventional surgical procedures. 

Considerable progress has been made in understanding the 
pathophysiological mechanisms underlying epileptic seizures in 

those patients who are resistant to AEDs and whose seizures have not 
yet been controlled. For these, the offered alternative is to undergo a 
surgical procedure; these surgical treatment modalities have varying 
degrees of clinical and experimental support. Even though removing 
a portion of the brain almost always carries other consequences, many 
of the subjects remain fully functional. This measure is highly invasive, 
although in many cases, long-lasting beneficial results have been 
achieved in patients.

Epilepsy surgery as an alternative treatment to control 
epileptic seizures

The first surgical procedures in epileptic patients were performed 
during the 19th century; when the insight of epilepsy as a cortical disorder 
of the brain emerged [10]. Today thanks to scientific and technological 
advances such as magnetic resonance imaging, or metabolic studies 
like positron emission tomography, single photon emission computed 
tomography, electroencephalogram and video-electroencephalogram 
monitoring, as well as electrocorticography, trans-operative, deep 
electrode registration and meshes to identify epileptogenic areas, there 
is now a bigger contribution to the accurate pre-operative evaluation 
and diagnosis of the epileptic zone to be possibly removed. Surgeries 
are planned to remove possible epileptogenic zones while preserving 
functional areas. Surgery outcome depends largely on the ability 
to locate the seizure focus along with the extension of the structural 
lesion. Due to a greater resection of the epileptic zone, this procedure 
offers a greater control of drug-resistant epilepsy than pharmacological 
treatment [11].

Surgery should not be thought of as a last resort. In order for a 
patient to be considered a potential candidate for surgery they must 
present drug-resistant epilepsy for at least 3 years and enough evidence 
that seizure onset is focal. Candidates should be reduced to those who 
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will most likely benefit from surgery enough to make a difference in 
their quality of life and exclude patients who could result harmed in 
the short and long term (Table 1). Surgeries are not recommended 
in patients whose epileptic focus is located on an eloquent zone 
[12]. Preoperatively, these surgery candidates should undergo the 
intracarotid amobarbital procedure (also called the Wada test) which 
is fundamental to define the hemispheric dominance of language and 
evaluate cognitive functions essential to prevent any postoperative 
deficit [13].  In recent years, this procedure has been largely replaced by 
functional MRI given its greater safety profile [75].

Main complications of neurosurgical procedures 
carried out in aim to control seizures

A prospective series study reported temporal lobe lobectomy as a 
surgical procedure done to treat drug-resistant epilepsy. Nevertheless, 
it showed that 2.9% of participants had some major complication 
(resolution > 3 months) and that a 7.8% had a minor complication 
(resolution < 3 months) after surgery. Extensive lobe resections 
increase the risk of complications, especially the appearance of visual 
disturbances. The most frequent post-surgical complications in 
adults are presented in order of frequency in table 2, with visual field 
involvement (quadrantopia [more frequent] or hemianopia) being the 
most frequent neurological complication. The age groups that most 
frequently present major complications are subjects 10 to 20 years of 
age along with subjects 40 to 50 years of age. Subjects 60 to 70 years of 
age tend to present minor complications compared to other age groups. 

The three main surgeries performed in adults for the treatment 
of epilepsy that generate the greatest number of complications are 
temporal lobe resection, frontal lobe resection and parietal lobe 
resection. Conversely, lesions caused by stereotactic surgeries in 
specific brain areas present the lowest risk of developing complications. 
These procedures are less invasive and have a higher safety profile 
[14,15]. Studies conducted with emphasis on the complications of 
epilepsy surgery have shown that the short- and long-term results of 
neurosurgical procedures with large invasion of brain tissue for drug-
resistant epilepsy may affect the quality of life of patients regardless 

of whether seizure control was obtained or not, due to neurological 
complications that limit functionality. Therefore, neo-aortic procedures 
that intend to provoke injury or stimulation of nuclei, or signalling 
pathways of cortical entry or exit, such as the cortico-cerebellar 
pathways, to be discussed later, can be a safe procedure with favourable 
results for seizure control with minimal risks of short and long-term 
complications.

Surgical procedures for the control of epileptic seizures
Lobectomies

The most common surgeries consist in removing a small portion 
of the brain to resect the epileptic focus. Bailey (1951) was the first to 
try temporal lobectomy to treat psychomotor seizures and the first to 
use electrography for intraoperative localization [16]. At the same time, 
Penfield (1950) initiated temporal lobe resections for the treatment of 
epilepsy, defining lobectomy as a type of surgery that can be done when 
a person presents seizures that always begin in the same cerebellar lobe 
[17]. Temporal lobe epilepsy surgeries are between 70-80% of all surgical 
interventions performed in patients suffering from refractory epilepsy 
[18]. The most common procedure is standardized anterior temporal 
lobectomy (ATL), which involves removing 4–6 cm of the anterior 
temporal lobe, including the amygdala and hippocampus. Patients with 
drug resistant epilepsy who can be treated with lobectomy are only 
those in whom the area of the epileptogenic focus (a term introduced 
by Gibbs and Lennox in 1938) [19], is detected in the temporal lobe, 
80% of TLE’s have onset in the hippocampus [20]. Seizure freedom has 
been reported in 70-80% of patients who undergo ATL [76], however, 
not all procedures can be done without damaging important functions; 
memory and language may be affected if this procedure is performed 
on the dominant hemisphere. One multi-institutional study reported 
surgical procedures registered on a 30-day outcome data after temporal 
lobectomy for medically intractable epilepsy, demonstrating a mortality 
rate of 1.4%, a major complication rate of 6.5%, and a readmission rate 
of 11% [21] Table 2.

Amygdalohippocampectomy

Selective amygdalohippocampectomy (SAH) is the most specific 
indication for mesolimbic temporal epilepsy. Studies report up to 65% 
of completely seizure-free patients in whom this surgical procedure is 
done [20]. A recent systematic review and meta-analyses comparing 
ATL and SAH demonstrated patients were more likely to achieve a 
better outcome after ATL, with a summary risk difference of 8% [77].

Corpus callosotomy

Corpus callosotomy was introduced as a palliative treatment for 
severe epilepsy, especially in children suffering from drop attacks, both 
tonic and atonic, e.g. Lennox–Gastaut syndrome [23,78]. Callosotomy 
involves cutting the nerve fibres connecting one side of the brain with 
the other, preventing the extension of abnormal activity to the middle 
part of the brain; an effort to limit the spread of epileptic activity 
between both hemispheres. This procedure theoretically reduces the 
severity and frequency of seizures. Although, long-term results suggest 
only 35% of callosotomy patients remain seizure-free after 5 years of 
surgery, the frequency of these seizures remains reduced (<50%) in 
most patients [24]. This surgery is considered palliative, meaning it 
does not offer a cure for epilepsy, but a reduction in seizure severity 
and a significative improvement in patients´ cognitive capacities. [25].

1. Confirmed diagnosis of epilepsy
2. Patients who meet established criteria for epilepsy refractory to drug treatment
3. Duration of seizures for at least 3 years still under pharmacological treatment
4. Probability of a disabilization of the epileptogenic focus through its resection
5. Resectable focus (except in candidates for callosotomy, vagus nerve stimulation and 
deep brain stimulation)
6. Probability of seizures control with an improvement in the quality of life

Table 1. Criteria for the selection of candidates for epilepsy surgery

Surgical complications
1. Infection
2. Hematoma
3. Pulmonary thromboembolism
4. Leakage of artificial cerebrospinal fluid
5. Hydrocephalus
6. Cerebral edema
Neurological complications
1. Impacts of the visual field (hemianopia and quadrantanopia)
2. Hemi / monoplegia
3. Sensitive deficit
4. Alterations of the cranial nerves
5. Aphasias

Table 2. Complications that occur in patients more frequently after epilepsy surgery
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Hemispherectomy 

When seizures are really devastating, neurosurgeons prefer to 
perform hemispherectomies which will undoubtedly paralyze the 
patient’s hemibody. This type of surgery removes and disconnects one 
half of the brain. At the beginning of the 20th century, hemispherectomy 
was introduced as a neurosurgical procedure by Dandy (1928) [26]. 
However, it was not until the 1930s that major advances were made in 
epilepsy surgery. After hemispherectomy, most patients will experience 
some degree of paralysis and a variety of deficits. When the procedure 
is done, patients may refer a loss of peripheral vision. In adult subjects, 
reduced neuroplasticity is no longer significant enough to recover 
this function.  Retrospectively in one study 12 adult patients (within 
18-56 years) were analysed, all of them with intractable epilepsy due 
to a unihemispheric pathology. Patients underwent a functional 
hemispherectomy, 83% of the patients were seizure-free, and 17% 
had recurrent seizures at last follow-up. Postoperative functional 
assessment revealed deterioration of motor function in 58% patients, 
whereas a 41% remained unchanged; language was unchanged in 66% 
patients [27].

In many cases, patients with medically intractable epilepsy may 
not be candidates for epilepsy surgery. For example, when the epileptic 
focus lies within an eloquent zone or when there are multiple epileptic 
zones. In these cases, there are other surgical alternatives such as brain 
stimulation [28].

Minimal invasion epilepsy neurosurgery

Not all surgical procedures offered to patients are done by removing 
brain tissue [29]. Other surgical procedures are also offered. Among 
these, the chronic implantation of electrodes for vagus nerve stimulation 
(VNS). This type of surgical procedure was approved by the Food and 
Drug Administration (FDA) in 1997 for medically intractable epilepsy 
and in 2005 for drug resistant depression [30]. This therapy helps with 
focal and multifocal epilepsy. Nevertheless, VNS therapy complications 
appear early, with some complications related to the procedure like 
intraoperative bradycardia, asystolia during the lead impedance test, 
peritracheal hematomas and infections (3-8%). When VNS is done 
and the vagus nerve is injured, there are alterations such as hoarseness, 
dyspnea and dysphagia owed to paralysis of the vocal cords and other 
complications due to the device implanted, including late infections or 
problems in wound healing. Late complications might include delayed 
arrhythmias, laryngopharyngeal dysfunction (hoarseness, dyspnea, 
and coughing), obstructive sleep apnea, stimulation of the phrenic 
nerve amygdala pain mimicking glossopharyngeal neuralgia [31]. 
The exact mechanisms on how VNS modulates seizures and mood are 
still not understood, and there are no indicators as to which patients 
are most likely to benefit [30]. VNS increases synaptic activity in the 
thalamus and its cortical projections to decrease the synchronization of 
synaptic activity in hypothalamus, amygdala, hippocampus and other 
parts of the limbic system. Another proposed mechanism by which 
VNS inhibits epileptic seizures is through the decrease in synaptic 
activity or by an intermittent increase in the release of noradrenaline 
and serotonin [32,33].

Thalamic nuclei stimulation has also been used for epilepsy control. 
Prior research conducted by Velasco et. al. reported that bilateral 
electrical stimulation of the centromedian thalamic nucleus, typically 
used for the treatment of kinetic disorders, reduced the overall number 
of tonic-clonic seizures and abscense seizures by nearly 80% in children 
with Lennox-Gastaut syndrome [34]. These results may be partly due to 
desynchronization and hyperpolarization of reticulo-thalamic neurons 

involved in the initiation and propagation of tonic-clonic seizures 
[35], its clinical efficiency remained consistent during the observation 
period (21 months). Alternatively, another report discusses a different 
approach involving VNS and deep brain stimulation in the anterior 
thalamic nuclei, observing just a minority of patients become totally 
seizure-free after both stimulations.

Cerebellum and epilepsy; minimal neurosurgical 
invasion as an alternative to control of seizures

Furthermore, cerebellum cortex stimulation has been proposed for 
patients presenting epilepsy.  A decrease of the excitatory activity in 
thalamic and cortical projections is believed to work [36-40], remaining 
crucial to advance experimental investigations to understand how 
brain stimulation works and how it can be implemented on patients 
with drug-resistant epilepsy. The cerebellum’s ability to inhibit clinical 
and experimentally induced seizures has been demonstrated by 
several authors who have examined the effects of cerebellar electrical 
stimulation on animal models and carried out in humans since the 
1970s [36-45]. Generating lesions in deep cerebellar nuclei [46-48] has 
been an experimental alternative for the control of generalized seizures 
induced by kindling. Cerebellum nuclei have also been stimulated to 
counteract epileptic seizures. Stimulation of the dentate nucleus has 
been reported to generate improvements in patients with different 
types of intractable epilepsy [36]. The knowledge we have about the 
cerebellum’s participation in epilepsy is thanks to animal models, 
in which we have also been able to prove that the stimulation of the 
cerebellum has beneficial results for epileptic seizures. Seizures induced 
by electrical stimulation in animal models reproduce the epileptogenic 
features in the intact brain with low mortality and high reproducibility. 
Several studies support the effectiveness of this stimulation on difficult 
epilepsy control. For example, cerebellar cortex stimulation has been 
reported to counteract epileptic seizures produced by a penicillin cat 
model [49,50]. Hutton (1972); Cooke and Snider (1955) [43,51], have 
reported that stimulation on the cerebellum counteracts seizures 
induced by stimulation of the cerebral cortex. 

Moreover, as described by Mutani and Farielo in 1969 [51], even 
when only the anterior lobe of the cerebellum is stimulated, the seizures 
produced by cobalt can be inhibited.  With this model of cobalt in cats, 
stimulation of the vermis was reported to produce a prolongation of 
seizures [52]. Conversely, Maiti and Snider [53], found that vermis 
stimulation suppresses epileptic activity produced by hippocampus 
stimulation. Hablitz [44], found that cerebellar stimulation has no 
effect on the model of penicillin-induced seizures. In cerebellum 
stimulation reports aiming to eliminate the seizure, we invariably found 
differences in methodology and models, so the results showed can have 
contradictory conclusions. 

Paradoxically, the model of epileptogenesis that has garnered 
the most knowledge for the study of epilepsy is the model of electric 
kindling, described by Graham Goddard in 1969 [54]. Kindling means 
the repeated application of subthreshold electrical stimuli in specific 
brain areas, such as the cerebral amygdala. This progressive stimulation 
produces behavioural and electrographic changes culminating in a 
complex partial seizure secondarily generalized. Kindling has served 
to study secondary generalized seizures which have the highest 
incidence in the epilepsy suffering population, as well as many of the 
known mechanisms of epileptic seizures. Thanks to this model it has 
been possible to prove the cerebellum’s participation in the epileptic 
phenomenon [45,48,55-57].
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Likewise, experimentally injuring some cerebellar areas has led 
to beneficial effects in epileptic seizures, as proven in different animal 
models by Dow (1962) [41], pioneers on the role of the cerebellum in 
epilepsy performed studies in rats that showed that the lesion of the 
cerebellum increases the duration of generalized seizures produced 
after the application of cobalt in the cerebral cortex. 

The cerebellum communicates with the central nervous system 
through three pairs of peduncles: inferior cerebellar peduncle, medium 
and superior cerebellar peduncle (SCP), forming the main cerebellar 
efference through the synaptic action of Purkinje cells [58]. The lesion 
or the stimulation of the SCP reduces the duration of epileptic activity 
recorded during the kindling model generalization phase reported by 
Paz (1991) and Rubio (2004) [45,56]. The SCP is formed by axons coming 
from the Dentate Nucleus (DN) and Interpositus Nucleus (IN) cells. 

Stimulation of the DN has shown inhibition of epileptic seizures 
caused by a penicillin model [43]. Our investigation group has suggested 
injuring the cellular DN or IN selectively with kainic acid, considering 
its ability to injure neuronal bodies without damaging input or output 
fibers [59,60], in order to decrease the duration of generalized seizures 
caused by electrical amygdaloid kindling in rats [48]. Histological 
findings of this study confirm destruction of neuronal bodies of DN 
and IN without damaging fibers (Figure 1); as it has been described 
in previous studies where rabbits have been used to determine the 
participation of these cerebellar nuclei in conditioning [61-63]. In 
addition, some other studies have described the role played by these 
cerebellar nuclei in epileptic seizures. A number of authors have 
suggested that an electrolytic lesion in the DN has a suppressive effect 
of epileptic activity, while the IN is not involved in this process [46,47]. 
Unfortunately, the electrolytic lesions are not lesions circumscribing a 
cell group; instead, they destroy entry and exit fibers.

The axons of DN and IN fibers are mostly glutamatergic and 
aspartatergic [64]. These establish synaptic contacts mainly with 
brain structures related to epileptic activity, such as: The Red Nucleus 
(RN), described as a motor nucleus due to its relation to motor 
coordination. Previous work by our research group demonstrated a 
delay in behavioural stage 5 and 6 presentation in cats when the RN 
nucleus is injured through the lesion of the middle cerebellar peduncle 
[56]. After the dentatotomy, in experimental research, monkeys have 
correctly performed assigned motor tasks within a few days post-
surgery, presenting a total recovery of motor functions; this type of 

injuries might only cause reversible consequences [65-67]. Even more, 
this lesion has already been used successfully in human patients [68].

The axons of the DN are found predominantly in the ventral 
lateral nucleus and the rostral pole of the posterior nuclear group of 
the thalamus. The thalamus has been considered as a key component 
of the initiation and propagation circuit of crises, but its exact role in 
epileptogenesis is unknown [69]. It is known that the thalamic cortical 
circuits are involved in generalized crises in absence crises models. It has 
been shown that repeated injections of N-methyl-D-aspartate (NMDA) 
in the midline of the thalamus in animals induces generalized seizures 
associated with temporal limbic posterior discharge in the amygdala 
or hippocampus, suggesting that NMDA receptors in the thalamus are 
involved in the modulation of temporal limbic excitability [70]. The 
ventrolateral thalamic nucleus establishes excitatory synaptic contacts 
with the cerebral cortex and constitutes the path of convergence of 
DN axons [71]. The thalamus and the motor cortex are known to be at 
the center of the development and spread of epileptic seizures [72,73] 
Studies in animals using the amygdaloid electrical kindling model show 
that when the ventrolateral thalamic nucleus is injured, the duration of 
epileptic activity is diminished [56].

Prior investigations of stimulation and cerebellar lesion for epilepsy 
inhibition have been proposed based on anatomical and physiological 
concepts of cerebellum exerts on the thalamus and cerebral cortex 
through the synaptic action of Purkinje cells mediated by cerebellum 
nuclei through SCP involved in the inhibitory effect of epileptic seizures 
[45,55]. The DN sends cholinergic and glutamatergic fibers to the RN, 
which is composed of glutamatergic and GABAergic cells. To test the 
participation of neurotransmitters mentioned above in seizures, a 
comparison is made between glutamate and gamma-aminobutyric acid 
(GABA) levels at the RN in a control condition, a kindled stage, and 
a kindled stage followed by injuries in DN. A significant reduction in 
glutamate and GABA in the was found in the kindled stage. Additionally, 
a reversed severity of seizures, restored GABA levels and an increase of 
GAD65, a GABA-synthesizing enzyme probably owed to an exacerbated 
demand of GABA, followed the injury carried out on the DN. GABA 
maintains the inhibitory tone that counterbalances neuronal excitation. 
As remarked, a decrease in GAD65 expression was found after the DN 
lesions, indicating that the GABA-synthesizing enzyme was no longer 
required once excitatory glutamate was eliminated. DN lesions and 
their consequent biochemical changes are capable of decreasing the 

Figure 1. Coronal section of the cerebellum projected onto photographic paper processed using the rapid procedure technique. (a) The interpositus nucleus (I). (b) Dentate nucleus (D). The 
rectangle shows a microphotographic image of a sagittal section stained with hematoxylin-eosin, indicating the presence of fibers on the lesioned side and cell bodies on the non-lesioned 
side. Kainic acid (K)
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generalized seizures induced by kindling stimulation. Thus, we suggest 
this type of dentate injury as a strategic therapy in medically intractable 
epilepsy treatment (Figure 2).

Conclusion
Patients with drug-resistant epilepsy may benefit from epilepsy 

surgery. Per contra, sequels such as alterations in cognitive procedures, 
motor skills or social stigma cannot be prevented. Therefore, we propose 
a selective lesion of the Dentate Nucleus as a possible alternative for 
patients who have uncontrollable seizures and because of functional 
reasons cannot be offered a conventional surgical procedure. 
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