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Abstract
We discuss the superiority of the high order tensor approach to HARDI, or High Angular Resolution Diffusion Tensor Imaging, over the probabilistic tractography 
approaches and the lower order tensor model (DTI, or Diffusion Tensor Imaging) discussed in. Probabilistic tractography methods, which utilize Monte Carlo 
sampling and bootstrap techniques, have a distinct disadvantage inherent in the need for assumed arbitrary priors in light of unknown circumstances (i.e., the obscure 
nature of the connective structure of the brain). In such situations, fewer model assumptions make more sense. This motivates our proposed method, which uses a 
semi-parametric high order tensor function with the ability to differentiate between multiple fiber directions. The ability to handle multiple or crossing fibers is the 
main advantage to the high order approach over DTI. Since it is known that such instances commonly occur in white matter, there is a clear need for a method which 
can effectively model this phenomenon. In this paper we discuss the advantages and disadvantages of the current works to highlight the reasons medics would improve 
analysis through our method. We also discuss the evaluation of performance on simulated and brain data.
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HARDI
In the calculation of the model under the Bayesian approach, 

one must choose a “prior” distribution to combine with one’s data, 
assumed to be the true distribution of the parameter of interest prior to 
the consideration of data. Unfortunately, these arbitrary priors are not 
robust and cannot perform well over a wide range of data. Situations 
will therefore inevitably arise in which our data disagrees with our 
prior belief. 

Since the detailed anatomy of the brain is still uncharted in terms of 
connectivity due to high amount of noise, this approach runs a high risk 
for misplacement of curve estimates and so called “phantom images”. 
The prior information for one region is not guaranteed to be applicable 
to any other region. Hence repeated sampling methods attempting to 
quantify uncertainty in the model may be used on an incorrect basis. 

In light of this it makes sense for a completely data driven, or non-
parametric, approach for the sake of robustness in obscure data one 
deals with in diffusion MRI analysis. To this end, we move towards a 
semi-parametric high order tensor model approach of the estimation 
of trajectories. Non-parametric or semi-parametric methods have 
inherited robustness to misspecification because they are completely 
data driven (or nearly completely) and fewer assumptions are made. 
The methods in [1-3] for DTI and HARDI models, both semi- 
parametric approaches, have this advantage. 

We provide a tracing of the fiber along with surrounding confidence 
ellipsoids so that scientists can better understand where the true fiber is 
located. Since the error in raw data measurements can result in a large 
error in curve estimates, we assess how much by following the curve 
with a surrounding confidence band. This method would enhance MRI 
analysis by helping to solidify confidence in correct interpretations of 
fiber locations by allowing the scientist to supplement information 

from original images with a region of confidence surrounding the 
regions of interest, as they indicate how reliable the location of the 
estimated fiber is (the tighter the confidence band, the more confident 
we are in that being the true location of the fiber). This is a one-step 
tracing process of the curve with its surrounding confidence ellipsoids, 
so that our method has the benefit of no iterative sampling. This makes 
it very advantageous in a computational sense. That is, we are carrying 
easily interpretable uncertainty through from the acquisition of the raw 
data with us to the curve tracing to obtain closed form estimates of 
tract uncertainty as opposed to the Bayesian approach, in which one 
needs to construct thousands of empirical curves in order to estimate 
the posterior curve distribution or perform repeated sampling methods 
for uncertainty quantification. 

Another component of our method is the ability to perform 
hypothesis tests of whether two points in the brain are connected. Given 
some starting point, we can use properties of our curve estimators to 
construct a hypothesis test that the curve starting at the given initial 
point will pass through some other point of interest. One can test 
regions of interest or exhaustively to supplement analysis and improve 
interpretability of images. 

While these advantages are pertinent to the approaches of both DTI 
and HARDI, high order tensor model approach can trace branching or 
intersecting curves. As mentioned before, this is highly preferred since 
it is known such branching and crossing phenomenons exist in the 
brain. In the paper [4] the high order tensor model is compared to the 
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The subject signed the consent form approved by the Michigan State 
University Institutional Review Board. DWI images were acquired with 
a dual spin-echo echo-planar imaging (EPI) sequence for 7 minutes 
and 45 seconds with the following parameters: 54 contiguous 2.4-mm 
axial slices in an interleaved order, FOV = 22 cm-by-22 cm, matrix size 
= 128 -by- 128, number of excitations (NEX) = 1, TE = 86.6 ms, TR = 
15.5 s, 25 diffusion-weighted volumes (one per gradient direction) with 
b = 1000 s/mm2, 4 volumes with b = 0 and parallel imaging acceleration 
factor = 2. Figure 1 summarizes our findings. Figure 1(a) shows the tracing 
of a fiber across a voxel at the central body of corpus callosum. The fiber 
is shown in red surrounded by the confidence band in black. Figure 1(b) 
shows the tracing of a fiber connecting the right and left lateral occipital 
cortical regions. The seed voxel is at the white matter near the right lateral 
occipital cortex. The fiber is shown in red surrounded by the confidence 
band in black. We use 95% confidence level for both images [7].

Conclusion
Our high order tensor model approach is an improvement over the 

existing standard matrix model approach in terms of both tightness 
of confidence bands and performance for connectivity testing. It has 
the advantage of no arbitrary assumptions in the presence of highly 
unknown situations and does not require iterative sampling. This 
sensible and computationally inexpensive approach can greatly improve 
the analysis of brain connectivity by instilling more confidence in the 
interpretation of images. We make now a move toward an entirely 
non-parametric approach as a direction of future research work.
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standard matrix model in all circumstances of fiber thickness, signal-
to-noise ratio and crossing fibers. It also yields tighter confidence 
ellipsoids by as much as a factor of 10 across all combinations of these 
parameters and by a factor of up to 1,000 for high signal-to-noise ratios. 
This is a huge advantage, since C, Y, or X shaped patterns (the ones 
that we observe the performance of our methods on) are commonly 
observed. Sequential combinations of these patterns can create any 
pattern one might expect to stumble across during analysis (or could 
imagine anatomically exists).

We first evaluated our method on simulated data. The data was 
simulated in a manner mimicking the information provided by the 
MRI image. We employed our method to assess its ability to trace 
common patterns. Since most tracings in the brain can be combined 
by these sequential C, Y, or X patterns, this makes sense to simulate 
such patterns and apply our method to assess how well we are able 
to trace the patterns. It is worth mentioning that the simulation of 
data for practical purposes is debatable due to the question of how 
to realistically simulate noise. Thus, another artificial dataset which 
simulates realistic fibers is the so-called tractometer [5]. A competition 
between different approaches revealed no single winner but showed 
how a fair comparison can be performed. Our approach performed 
excellent on this dataset using just the DTI model, see [6].

Our method performs well on brain data as well. In the paper [1] 
we summarized the analysis of the region of the white matter C-shaped 
area in the brain of the corpus callosum. The performance of the high 
order model yielded estimated curves consistent with the known 
anatomy of this region of the brain with small covariance. The method 
is currently being further used to explore the detailed anatomy of other 
regions of the brain and a paper is in preparation. For example, we 
applied our method to a diffusion-weighted imaging (DWI) dataset 
collected from a healthy adult brain on a GE 3T Signal HDx MR 
scanner (GE Healthcare, Waukesha, WI) with an 8-channel head coil. 

(a) (b) 

Figure 1. Real examples of images obtained via HARDI with estimated integral curves and confidence ellipsoids. A black 95% confidence band surrounds the estimated fiber. (a) Tracing of 
a fiber across a voxel at the anterior body of corpus callosum is in red. (b) Tracing of a fiber connecting the right and left lateral occipital cortical regions is in red.
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