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Abstract
Therapies designed to disrupt amyloid plaque deposits or prevent their formation have yielded disappointing results against cognitive failure, suggesting that both 
our mechanistic models of dementia and interventions must become more nuanced. These treatments targeted Aβ40/42, but the amyloid accumulated in Alzheimer’s 
disease patients is modified extensively and far more structurally diverse. Despite intensive work, the structure and physical state of the most toxic amyloid species 
remains mysterious.  In addition, multiple lines of evidence suggest the genesis and progression of dementia is more complicated than the accumulation of senile plaques 
beyond a tolerable threshold. If amyloid plays key, but non-exclusive, roles in dementia pathogenesis this hypothesis must be addressed through investigations that are 
more holistic in scope. New imaging methods provide investigators unprecedented capabilities to detect and classify neuropathology in living subjects. Interpreting 
future clinical trial outcomes will hinge on correlating effects against dementia in subject cohorts that are precisely differentiated with respect to neuropathology and 
neurochemistry. Improving understanding of the comorbidities and the environmental/lifestyle factors foreshadowing cognitive failure will aid in the interpretation of 
clinical trials. Most important, as we seek an elusive cure for AD, these findings may be rapidly translatable into concrete and achievable public health improvements.  
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Introduction
The notable accumulation of amyloid-β (Aβ) peptides in 

Alzheimer’s disease (AD) brains led to the postulation of  the amyloid 
cascade hypothesis. Profuse amyloid plaques in demented subjects 
and studies of early-onset Alzheimer disease (EOAD) genes provided 
strong experimental supporting evidence for the amyloid cascade 
hypothesis. However, disrupting Aβ deposits or preventing their 
formation have, so far, not yielded commensurate impacts against 
dementia in clinical trials. The almost exclusive focus on the amyloid 
cascade hypothesis inadvertently left systematic studies of comorbid 
conditions, environmental, lifestyle and psychosocial influences on 
dementia comparatively unexplored. 

The amyloid cascade hypothesis has dominated the field for 
over two decades. Although amyloid plays an important role in the 
pathogenesis and clinical course of AD, interventions against Aβ have 
had only limited impacts against dementia. Despite the translational 
frustrations, the thorough investigation of amyloidosis in the ambit 
of AD has provided profound insights into the understanding of 
the mechanistic impacts of Aβ on dementia development. We offer 
a succinct description of the present status of late onset Alzheimer’s 
disease (LOAD) research and its nosology in relation to the amyloid 
hypothesis.  In addition, we make reference to synergistic and/or 
alternative groups of abnormal pathological options in view of the 
disappointing therapeutic attempts to interfere with the clinical 
course of LOAD. At present, some of these pathogenic alternatives 
have not been sufficiently studied to enable the development of robust 
hypotheses. Such is the case of environmental, lifestyle and psychosocial 

factors which have been mainly based on correlative observations but 
have potential for future preventative and therapeutic interventions. On 
the other hand, the contribution of cardiovascular system dysfunctions 
and the endocrine biochemical disturbances created by diabetes type-2 
have been sufficiently investigated to warrant their participation in the 
pathogenesis and pathophysiology of LOAD. 

While amyloid seems to play critical role(s) in LOAD, there are 
multiple routes to dementia that do not necessarily involve amyloid 
deposition.  We call for a more expansive view of dementia pathogenesis 
and its multifactorial instigators and suggest that studies of these factors 
are about to be augmented by a better understanding of age related 
comorbidities and exogenous risks factors impacting LOAD etiology. 
Advances in imaging technologies as well as improved knowledge 
of potential biochemical pathways leading to neurodegeneration 
coupled with data processing innovations promise to revolutionize 
our understanding of the intricate and complex pathogenesis of 
LOAD. New methods may ultimately confer capabilities to distinguish 
dementia arising through distinct pathways enabling their more refined 
nosological classification and the development of precision medicine.  
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Viewing dementia in broader context
Clearly defined mutational events in APP, PSEN1, PSEN2, tau, 

α-synuclein and APP gene duplications are directly responsible for 
genetically determined neurological disorders. Late onset Alzheimer’s 
neurodegeneration, on the other hand, results from the summation 
of genetic predisposition, epigenetic modulation and multiple brain 
and aging-associated systemic declines as well as from the negative 
contribution of environmental toxins, damaging lifestyles and 
negative psychosocial influences. Mutations or age-related molecular 
conformational changes that propagate misfolded molecules add to the 
long list of age-associated pathological events terminating in neuronal 
degeneration and brain vascular malfunction. The participation of a 
mélange of pathological events have been primarily classified on the 
bases of their clinical manifestations and most prominent pathological 
lesions. However, the neuropathological lesions associated with 
neurodegeneration are present in variable densities and unique 
combinations that complicate their classification. It is also evident that 
besides the presence of amyloid there are other independent systemic 
and cellular mechanisms in LOAD pathogenesis [1]. 

Diverse routes to dementia
After 25 years of research guided by the amyloid cascade hypothesis 

we cannot explain why some individuals with LOAD harbor profuse 
amyloid deposits while others either entirely avoid this situation or 
have a limited number of these lesions. What unique history triggers 
these outcomes? Is amyloid deposition an essential rescue operation 
that ensures brain survival and prolongs life or is it an accident of 
nature that disseminates a rogue molecule that spreads and destroys 
the brain? These pressing and obvious questions have not yet been 
entirely resolved.   

The variable clinical signs and symptoms of LOAD dementia 
may be the consequences of a collection of conditions and 
neuropathologically distinct diseases [2]. Although LOAD is formally 
confirmed after postmortem evaluation of brain amyloid plaque 
deposition and intracellular neurofibrillary tangle (NFT) accumulation, 
demented subjects often harbor heterogeneous conglomerations of 
cerebrovascular and other pathological lesions [3-10]. Advancing age 
is recognized to be the most significant risk factor for LOAD, but the 
relationship between neuropathology and dementia in the elderly is 
not a simple one [11].  Nonagenarian subjects harboring heavy amyloid 
plaque burdens offer an important insight into dementia etiology. The 
indistinct demarcation between LOAD and non-demented oldest-old 
groups in terms of Aβ-related pathological and biochemical features 
suggests involvement of other significant factors in neurodegeneration 
and cognitive failure [12]. 

Recognizing the relatively weak correlations between fibrillar 
amyloid levels and dementia, investigators have postulated the most 
neurotoxic entities are soluble Aβ oligomers [13-17].  However, 
the mechanism producing a transition to toxicity is unclear as Aβ 
peptides are normal constituents of brain, cerebrospinal fluid, plasma 
and other peripheral tissues. Moreover, Aβ42 toxicity is only evident 
in vitro at concentrations thousands of fold greater than present in 
vivo [13]. Detailed examination of the molecular constitution of the 
Aβ species present in LOAD exposes additional complexities.  These 
amphipathic highly reactive Aβ molecules are subjected to extensive 
posttranslational modifications [18-37]   and proteolytic degradation 
with altered solubility, chemical reactivity and biophysical properties. 
These alterations also lead to a propensity for Aβ to dimerize and 
form larger oligomers [38-53]. In addition, subtle posttranslational 

conformational alterations can produce distinct Aβ strains with toxic 
prion-like properties [54]. Analogous to prion diseases, although non-
infectious, AD amyloid pathology has long been recognized to be 
transmissible through Aβ seeding protocols into experimental rodents 
[55,56].

Several authors have challenged the supremacy of the amyloid 
cascade hypothesis implying that the presence of plaques is neither 
necessary nor sufficient to yield dementia [15,57-62]. Although Aβ 
is linked to LOAD, it may be an error to view it as the sole causative 
agent [57,63]. The prevailing view of LOAD dementia as caused by 
a succeeding series of consequential events initially precipitated by 
amyloid accumulation [64] seems poised to become more nuanced and 
mechanistically complex. 

Less attention has been devoted to the possibility that other APP 
proteolytic fragments, which are presumably also elevated such as the 
Aη-α proteolytic fragment of APP that inhibits hippocampal neuronal 
activity, may play a prominent role in the pathogenesis and progression 
of LOAD [65]. In addition, the APP N-terminal peptide/DR6 receptor 
interaction [66], APP δ-ɣ fragment [67,68], APP C-terminal peptides 
CT99/CT83 [69], Jcasp, P31 and the Aβ-related P3 [70] are neurotoxic 
or provoke neuronal apoptosis. Our preliminary observations suggest 
that in LOAD putatively toxic CT99/CT83 peptides, rather than Aβ, 
accumulate abundantly in cellular membranes as if they were not 
processed by the ɣ-secretase. Furthermore, increased levels of AICD can 
cause hippocampal mossy fiber sprouting, neuronal hypersensitivity 
to stress and silent seizures [71]. Duplication of the APP gene results 
in ~50% increased production of Aβ causing EOAD with cerebral 
amyloid angiopathy [72] similar to the situation observed in Down’s 
syndrome [73]. Elevation of the multiple APP-derived peptides may 
have some disadvantageous metabolic effects and participate in 
neurodegeneration through pathways independent from amyloid 
accumulation.  

Expanding the nosology of AD related neurodegeneration  
New imaging methods have drawn attention to complexities in 

the relationship of neuropathology to dementia. Although persuasive 
evidence suggests amyloid positivity is correlated with dementia 
development [74] other observations indicate separate pathways to 
neurodegeneration exist [75] which do not necessarily involve amyloid 
deposition. Studies of younger Dominantly Inherited Alzheimer 
Network (DIAN) EOAD mutation carriers revealed amyloid 
deposition is an early event in the progression of neurodegeneration 
[76]. However, the situations in subjects with spontaneously emerging 
neurodegeneration and dementia are more complicated.   Imaging 
studies have revealed a class of cognitively normal subjects exhibiting 
biomarkers of neurodegeneration in the absence of detectable amyloid 
deposits designated suspected non-amyloid pathology (SNAP) [77]. A 
significant minority (25%) of the cognitively normal subjects examined 
in a population-based sample of elderly individuals were categorized 
as SNAP. Furthermore, a substantial number of elderly individuals 
labelled as primary age-related tauopathy (PART) harbor frequent 
NFT in the medial temporal lobe, basal forebrain, brainstem, olfactory 
bulbs and cortex without amyloid plaque deposits. Clinically these 
PART individuals exhibited cognitive function ranging from normal to 
severely impaired [78]. Additional longitudinal studies will be required 
to establish whether all PART subjects are destined to develop amyloid 
deposits and LOAD with the passage of sufficient time. 

It is possible that imaging methods are comparatively insensitive 
to incipient amyloid deposits.  However, a study of subjects clinically 
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diagnosed with mild to moderate LOAD [79] revealed a SNAP-like 
subgroup with cortical soluble and insoluble Aβ levels that were low 
or fell below ELISA detection limits. These results undermine attempts 
to explain LOAD dementia as a simple and direct consequence of the 
presence of soluble or aggregated toxic amyloid species. Further, they 
reveal that the standard model of LOAD progression [80] in which 
amyloid accumulates relentlessly for years and precedes the appearance 
of NFT and dementia is not universal. The data confirm the earliest 
phases of LOAD, the point deemed critical for preventative therapeutic 
intervention, is both poorly defined and neuropathologically 
complex.  

The recent discovery that brain hypometabolism and atrophy 
sometimes precede amyloid deposition suggest that normalcy and 
LOAD are more precisely differentiated by the presence of biomarkers of 
neurodegeneration [81]. A comprehensive reassessment of discreet AD 
neuropathological and neurodegeneration biomarkers in the context 
of NIA-AA clinical criteria has been recently published [82]. The new 
scheme opens the possibility for the selection of more precisely defined 
cohorts for future clinical trials. The addition of other biomarkers 
such as those involving vascular, endocrine and immune disturbances 
will further refine the nosology of what we currently designate as AD. 
A meticulous accounting of biomarker status and correlation with 
cognitive function may help clarify whether anti-amyloid therapy 
would be most beneficial to only a subclass of dementia patients. 

Transgenic mice do not produce the biochemically complex 
pathological events exhibited in human AD [83-85], perhaps explaining 
why the identical therapeutic interventions have been consistently far 
more effective in animals than cognitively impaired trial participants. 
Moreover, these observations reveal the pathophysiology and clinical 
changes observed in LOAD are the culmination of unique and 
complicated human disease processes, impossible to model fully in 
experimental animals.

The experiences of AD interventions

Immunotherapy and other amyloid diminution strategies that 
proved successful in transgenic mice [86] have yielded limited 
beneficial outcomes against AD in clinical trials.  For a detailed 
description of these clinical trials and their results the reader is referred 
to the comprehensive reviews published in the Alzforum database 
(http://www.alzforum.org/therapeutics). The combined body of 
evidence from these disappointing efforts to halt AD dementia has led 
to concerns that the amyloid hypothesis [87,88] must be reevaluated 
[89] or is channeling the field into unproductive therapeutic directions 
[15,62].  

Some of the strongest evidence directly implicating amyloid 
in dementia instigation is genetic; mutations in PSEN and APP 
genes, as well as APP gene duplications, lead to what we defined as 
EOAD.  Despite these links and detailed molecular characterizations, 
it is not possible to specify the role(s) played by amyloid and other 
APP fragments in AD [90-91] nor, given the enormous list of critical 
ɣ-secretase substrates, is it clear how PSEN mutations produce 
neurodegeneration. Presenilin gene conditional knockout mice exhibit 
reduced Aβ production and increased inflammatory reactions [92] 
and detailed examination of PSEN mutations has revealed unexpected 
diversity in the corresponding impacts on Aβ production [19,93-98]. It 
is now clear that the pathologic and clinical effects of these mutations 
are impossible to match with simple notions of enhanced production 
of Aβ42 or altered Aβ40/Aβ42 ratios. Noting that amyloid production 
is not necessarily required for AD prompted the proposal of the 

PSEN hypothesis [99] in which the partial loss of PSEN gene function 
provokes neurodegeneration and AD pathology.  This model predicts 
that inhibition of ɣ-secretase would actually aggravate dementia [100]. 

It is noteworthy that a large-scale clinical trial of the ɣ-secretase 
inhibitor semagacestat was terminated when analysis revealed the 
subjects were experiencing accelerated cognitive function declines and 
other serious adverse events such as cancer [101]. Although failing to 
achieve the desired clinical endpoints, the trial might provide fresh 
insights into the mechanism of dementia production through the 
biochemical activities of PSEN. Postmortem neuropathological and 
neurochemical evaluations of trial participants may help clarify the 
nature of treatment responses and expose the existence of any common 
patterns.  A comprehensive results report [101] revealed 26 subjects 
receiving semagacestat expired during the clinical trial. Detailed 
postmortem biochemical investigations of this participant subgroup, in 
particular, will be extraordinarily important, but 5 years after the trial 
termination only a single assessment has been published [102]. Other 
clinical trials involving the ɣ-secretase inhibitors were also halted 
due to undesirable side effects [103,104]. In spite of these frustrations 
controlling Aβ production by modulating the activity of the β- and 
ɣ- secretases is being actively pursued (see Alzforum database: http://
www.alzforum.org/therapeutics). 

Immunotherapy interventions to mitigate AD dementia have 
been predicated on the assumption that unmodified Aβ deposits are 
the prime targets.  The clear biochemical complexity of Aβ peptides 
in AD and the comparatively vague understanding of their functions 
raise the unsettling prospect that interventions have not succeeded in 
changing the clinical course of dementia because they were targeted 
inappropriately or the clinical trials were incorrectly designed [105-
108]. However, a precise deconvolution of immunotherapy clinical trial 
data revealed some encouraging results that were initially obscured due 
to grouping together subjects in the treatment cohort with different 
levels of individual clinical conditions coupled with large patient 
dropouts from the placebo group. However, recent results indicate 
that the use of monoclonal antibodies in large phase-3 clinical trials 
comprising individuals with mild LOAD failed to meet their primary 
end-points (http://www.alzforum.org/therapeutics). In general, these 
observations suggest that independent of amyloid accumulation other 
pleiotropic dysfunctional molecules, perturbed biochemical pathways 
and/or systemic comorbidities are involved in the evolution of LOAD 
neurodegeneration. 

The primary amino acid sequence of APP has been highly conserved 
through evolutionary history suggesting an underlying functional 
importance for both the intact molecules and its proteolytically 
processed derivatives [109-111].   Although AD is defined on the 
basis of plaque and tangle neuropathology, considered in a broader 
evolutionary context it is difficult to assign unambiguous pathologic 
effects to amyloid deposits [112]. Brain amyloid deposition is linked 
to aging and dementia in humans as well as other mammals including 
canines and primates, but these animals lack NFT and are incomplete 
LOAD models [113]. 

Several investigators speculate that soluble oligomeric Aβ represent 
the most neurotoxic species in AD while more massive amyloid 
deposits are comparatively benign [13-17]. This suggests the sudden 
and complete disruption of amyloid deposits may be detrimental 
by unleashing toxic species as well as eliciting vasogenic edema 
and microhemorrhages [114,115] aggravating neuroinflammation. 
Examination of the aftermath following active immunization suggests 
that mobilized Aβ remained trapped in the brain [116-119]. Passive 
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immunization with humanized monoclonal antibodies against Aβ 
exhibited adverse effects, which were exacerbated in subjects with 
APOE ε4 genotypes [120]. These deleterious effects may result from 
disruption of vascular amyloid deposited to seal breaches in the blood-
brain barrier [90], blocking the presumed antimicrobial activity of 
Aβ [121,122], interference with the heavy metal chelating ability of 
Aβ   [123-124], meddling with the vasoconstriction induced by Aβ/
endothelin-1 activity [125,126] or disturbing Aβ-mediated glucose-
fatty acid energy metabolism [127]. Fresh approaches toward the design 
of Aβ active vaccinations, that include enhanced immunogenicity, may 
provide effective and affordable AD mitigation [128]. Besides assessing 
age, gender, personal and family clinical history, it may be necessary to 
adopt more holistic diagnostic and enrollment criteria which include 
general evaluation of cardiovascular, endocrine, immune and other 
systemic and metabolic dysfunctions as well as environmental and 
lifestyle factors [129-131]. 

Cardiovascular dysfunction and diabetes in AD patho-
genesis

The pathogenesis and pathophysiology of LOAD may be complicated 
by systemic diseases and environmental factors such as cardiovascular 
dysregulation. Cardiovascular system disease or natural aging of the 
heart and vessels, and brain microcirculation may result in regional or 
global brain perfusion insufficiency with consequent negative effects 
on cognitive capacities [132].  The brain consumes disproportionate 
amounts of oxygen and has no energy reserves making an adequate 
blood supply crucial to proper function [133]. Regional brain activity 
levels may be inferred by detecting rapid changes in blood oxygenation 
levels (BOLD) which are presumed to reflect neuronal and associated 
tissue metabolic responses to stimulation [134]. Recent analyses have 
revealed an association between intracranial atherosclerosis and LOAD 
dementia [3-10], and significant correlations between neuropathology 
and cognition and cardiovascular disease as well as with age-associated 
cardiovascular performance decline [135-144]. Observations of 
LOAD subject brain activities reveal marked region-specific metabolic 
reductions compared to subjects without dementia suggesting both 
baseline perfusion level declines as well as a loss of surge capacity 
in response to stimulation [145-149]. An overwhelming body of 
epidemiologic evidence confirms that LOAD and cerebrovascular 
disease share common risk factors [150]. New imaging studies have 
indicated that in some elderly individuals, white matter rarefaction (a 
surrogate of cerebrovascular insufficiency), brain infarcts and amyloid 
exert additive effects on cognitive impairment [151]. Intriguingly, what 
appears to differentiate the oldest-old high pathology control subjects 
from age-matched LOAD cases is that the former have significantly 
less white matter rarefaction, less cerebral amyloid angiopathy and 
fewer NFT than the latter, which suggests less vascular compromise 
[12]. Recently, an integrative multifactorial data-driven model of 
LOAD suggested that vascular dysregulation plays a preeminent role 
in the pathogenesis and progression of this dementia and apparently 
precedes Aβ manifestations [152].  

A substantial fraction of dementia cases harbors a heterogeneous 
blend of neuropathological lesions and vascular malfunction described 
as ‘mixed’ pathology [3,107-110] [3, 153-156]. Although putatively 
independent of each other [157] these pathological changes do not 
exist in isolation and using cognitive impairment as a benchmark, it is 
clear coexisting cerebrovascular malfunction amplifies the deleterious 
effects of LOAD pathology and accelerates dementia progression 
[150,157]  with important therapeutic implications [158].  Impaired 
circulation will yield commensurate energy production failure 

and overall metabolic disturbances and these will have significant 
consequences for neural function [127]. In addition, the age-associated 
brain metabolic fueling pathway shifts from glycolysis to ketone body 
oxidation, reminiscent of hibernation [127,159]. This adjustment may 
represent an alternative rescue or adaptive function enabling vital neural 
activities to continue at nominal levels despite suboptimal perfusion 
and physiological conditions. The complexity of brain physiology 
coupled with the highly heterogeneous nature of neuropathology may 
have hindered attempts to mitigate AD dementia using therapeutics 
focused on amyloid deposit disruption [153].

If circulatory system insufficiency induces or exacerbates AD, 
restoring blood flow should improve cognitive function [132]. 
Aggressive medical therapy, artery bypass and stenting methods have 
been successfully attempted as a means to restore brain blood flow 
[160-162]. Systematic exploration, of respiratory and cardiovascular 
disorders related to dysfunctional breathing, lung and heart maladies, 
hemodynamic dysregulation, arterial stiffness and cerebrovascular 
disease as well as assessment of the blood-brain barrier (BBB) conditions 
in relation to cognitive evaluations and treatment of memory impaired 
patients is long overdue  [132,163-168]. New devices to monitor 
cardiovascular function and blood chemistry on a continuous basis 
together with imaging-based determinations and ultrasound studies 
of extant or unfolding AD pathology and cognitive function may 
offer the potential to undertake proactive dementia preventative and 
effective measures. A capacity to detect and mitigate the subtle changes 
heralding increased risk of cognitive failure would be a cost-effective 
adjunct to the standard treatment approaches. 

Subjects with type 2 diabetes are at elevated risk for dementia. This 
tenet is based on studies suggesting decreased brain insulin and insulin 
receptors, including insulin-like growth factor and reduced CSF 
insulin levels. Although these observations have been controversial 
[169], brain insulin administration enhances memory and cognition 
in humans [170]. Brain insulin resistance appears to be responsible for 
grave alterations in energy metabolism and mitochondria dysregulation 
which could explain amyloid and NFT deposition as well as white matter 
atrophy, brain microvascular disease, neuroinflammation and glial 
and neuronal demise [171]. Recent investigations have demonstrated 
that long lasting insulin (‘insulin detemir’) administered intranasally 
improved cognition in individuals with MCI and AD [172]. An ongoing 
Study of Nasal Insulin to Fight Forgetfulness (SNIFF) is evaluating 
the effects of insulin on amnestic MCI and early AD individuals. It 
remains unclear whether insulin dysregulation and hyperglycemia 
actually cause the pathologic changes of AD [173].  However, vascular 
damage is prominent in both conditions and chronic diabetes may 
promote malfunction of the blood-brain barrier associated with AD 
[174].  Alzheimer disease treatments have focused on eliminating 
amyloid deposits, but the intricate interrelationship between dementia 
and diabetes suggests that successful long term mitigation will also 
necessitate careful management of insulin and glucose levels. 

Between now and then – modifying the trajectory of 
AD dementia while seeking an elusive cure

The long effort toward unraveling the pathologic mechanisms 
of AD has not yielded therapeutic successes commensurate with 
the enormous investment of funds and effort.  Mindful of oft-
repeated ominous demographic trends [175] new approaches are 
needed. However, while no miracle cure is in the offing, we are not on 
an inevitable arc toward disaster. Perhaps the message that LOAD risk 
is potentially modifiable by multiple interventions has been lost in the 
pursuit of a universal remedy. 
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Alzheimer’s disease research investigations are often harmonized 
with the amyloid cascade hypothesis. However, we may need to 
move past the widely accepted assumptions that Aβ species or their 
soluble/oligomeric/fibrillary forms are the only culprits underlying the 
pathogenesis of neurodegeneration and clinical manifestations of AD. 
A crucial first experimental step, capable of validating or refuting the 
amyloid hypothesis, will be to clearly establish the molecular forms 
of Aβ that are toxic to the brain and investigate their biophysical 
properties. Validation of this hypothesis may demand biopsies rather 
than experimental cell lines or animal models and will present a 
challenge due to the kaleidoscopic heterogeneity of Aβ. However, 
the ultimate validation of the amyloid cascade hypothesis will enable 
precisely targeted therapy which may produce significant results 
against dementia. 

The route to dementia is varied and complex and we have simply 
equated EOAD and LOAD on the bases of their most striking 
neuropathological lesions [176]. Although the current mechanistic 
model is economical, exploring biochemical, biophysical and 
biomarker differences will lead to a better nosological understanding. 
Analogous to the situation in cancer research, the passage of time and 
accumulation of additional data may force an appreciation for the 
underlying biochemical heterogeneity of dementia and its implications  
[177-179]. 

New technologies embracing the use of human pluripotent stem 
cells and 3-dimensional human cell culture systems, which mimic 
the biochemistry and physiology of the human brain, may offer 
suitable models to better understand the dynamics of dementia than 
phylogenetically distant animal paradigms. The use of human brain 
biopsies [180] will be an indispensable approach that will provide 
information on the typical sequence of events preceding or precipitating 
the distinct classes of dementia. They will also afford appraisals of 
protein, lipid, carbohydrate and metabolite pools with state-of-the-
art mass spectrometry and ultrasensitive immunoassays as well as 
ultramicroscopic assessments of structural cellular scaffolds, organelles 
and membrane pathology. The availability of biopsied brain tissue 
will also enable the discovery of uniquely time-dependent epigenetic 
changes and disturbed metabolic pathways involved in the pathogenesis 
and evolution of the different types of dementia. Furthermore, brain 
biopsies will also allow harvesting of autologous replacement cells that 
may restore cognitive function [181]. Neuroimaging advances will 
supply further information on specific quantitative imaging-detectable 
neuropathology such as Aβ, tau, α-synuclein, TDP-43 and other 
deviant molecular forms enabling improved selection and cohorting 
of patients for clinical trials. Neuroimaging innovations will also clarify 
the temporal sequence of neuronal and glial degeneration including 
myelin loss, defective connectivity configurations, synaptic density, 
brain microvascular disease, BBB status and detailed quantitation of 
chronic hypoperfusion and its functional consequences. In addition, 
improved computational models that integrate molecular network 
dynamics and data processing analysis will be pivotal in understanding 
the origin and dynamic evolution of the complex chain of inter-related 
events that lead to different forms of neurodegeneration.  

Multiple lines of biochemical and clinical data confirm that LOAD 
is not inevitable and strongly suggest several important medical and 
behavioral risk factors are modifiable [182, 183]. The incidence of 
dementia may have stabilized or decreased in some high-income 
countries over three decades [184-185]. Although the exact causes 
behind these trends are unknown, they may reflect improved provision 
of medical services, enhanced educational levels and better control of 

cardiovascular diseases in addition to healthier diets and increased 
physical activity. Regrettably, a concurrent upsurge in obesity, diabetes 
and hypertension in the general population as well as the increases in 
life expectancy and population numbers may reverse these trends in 
the foreseeable future.  

The Religious Order Study [156] and other investigations [186,187] 
reveal LOAD development risk may be recognizable early and imply 
the trajectory toward dementia could be altered through several 
intervention strategies. Late onset Alzheimer’s disease emergence is 
clearly correlated with readily recognized and prevalent exacerbating 
medical issues such as diabetes  [188, 189], mid-life hypertension [166, 
190, 191] cardiovascular diseases [2, 166, 168, 192], depression [193-
196] and anxiety [197] that are potentially subject to direct medicinal 
mitigation. In addition, practical behavioral interventions such as 
stress reduction strategies [198], regular exercise regimens [199-202], 
social engagement [203-206], intellectual attainment ] [207-210], 
spirituality [211-215] and weight control [216-218] that are under the 
personal management of subjects may exert positive influences against 
dementia development risks. The vast unexplored and simultaneously 
underexploited territory of LOAD is the impact of the environment 
[219]. Nearly 25 years ago, Martin and Fukuchi [220] noted the 
complex interrelations between environmental factors and intrinsic 
aging processes that sometimes culminates in dementia.

It is clear that amyloid plays a pivotal role in the pathogenesis and 
pathophysiology of AD. The combined investment of research effort by 
academia and the pharmaceutical industry in search of an effective AD 
treatment has expanded understanding of dementia development and 
fundamental brain chemistry and physiology.  Although there seem 
to be several pathways to dementia, it is important to recognize the 
contributions to healthy aging that active lifestyle interventions and 
education offer. Ultimately, as new imaging studies have confirmed, 
a substantial fraction of dementia cases may have etiologies distinct 
from what we presently designate as LOAD. Perhaps cancers sparked 
by an assortment of interacting genetic, epigenetic, physiologic and 
environmental factors, provide an apt analogy for dementia therapy. 
Vanquishing the multifactorial disorder, we know as Alzheimer’s 
disease may oblige the implementation of several strategies because 
there are many ways to cross the Rubicon of dementia. 
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