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apnea syndrome.

Introduction
Systemic lupus erythematosus: Systemic lupus erythematosus 

(SLE) is an autoimmune disease characterized by multi-organ chronic 
inflammation [1,2] immune complex deposition [3], and the production 
of autoantibodies against nucleic acids and binding proteins, reflecting 
a loss of self-tolerance [4]. The clinical picture of SLE includes skin and 
joints symptoms; cardiovascular events; damage to kidneys, the nervous 
and hematopoietic systems; and treatment-derived infections [3].

Immune response in systemic lupus erythematosus: SLE is 
characterized by an aberrant immune response [3,5,6] In a study, SLE 
patients showed decreased levels of myeloid dendritic cells (mDCs, 
BDCA-1+CD11c+lin−) and increased numbers of plasmacytoid 
DCs (pDCs, BDCA-2+CD123+lin−) [7]; however, a decrease in the 
number of pDCs was reported in another study [8]. Dysfunctional 
antigen presentation by DCs could hamper T and B cell tolerance in 
SLE [5]. Other alterations in the activation and secretory functions 
of circulating and tissue-infiltrating macrophages have been reported 
[9], such as a defective phagocytosis and/or an increased expression 
of CD86 (monocyte derived-macrophage type 1, or M1 marker) and a 
decreased expression of CD163 (M2 marker) [10].

Lymphocyte function has also been reported as defective. A 
failure of T cells to produce IL-2 and a polarization toward Th17 from 
regulatory T (Treg) have been observed. An increase in the levels of 
CD4−CD8− double-negative T cells and of autoreactive B cells, as 
well as an overall B lymphopenia, was reported. Additionally, Treg 
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(CD4+CD25+FOXP3+) cells have been found deficient or defective in 
SLE patients [11]. On the other hand, increased levels of T follicular 
helper (Tfh) cells are correlated with an increased frequency of flare-
ups and with decreased Treg levels and/or function in SLE patients 
[12,13]. Another study indicated that IL-2- and IFN-γ-producing 
CD4+ Th1 cells are required for antibody production by autoreactive B 
cells [14]. Increased numbers of Th17 cells and levels of IL-17 have been 
found in SLE patients [15,16]. Finally, aberrant signaling pathways have 
been found in T cells from SLE patients, which affect their function and 
differentiation [17].

Parkinson’s disease: Parkinson’s disease (PD) is the second most 
prevalent neurodegenerative disorder, after Alzheimer’s disease [18]. 
The clinical diagnosis of PD relies on the criteria issued by the PD Brain 
Bank in the United Kingdom [18]. Patient performance and follow-up 
are evaluated with the MDS-UPDRS scale [18,19], while PD staging is 
based on the Hoehn and Yahr scale [20]. PD characteristic symptoms 
like bradykinesia, rest tremor, and rigidity are the result of a progressive 
degeneration of dopamine (DA)-producing neurons in the substantia 
nigra pars compacta (SNpc) and the resulting loss of DA signaling to 
the corpus stratium [21].
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Immune response in Parkinson’s disease: The pathophysiological 
hallmark of PD is neuroinflammation, evinced by gliosis and T 
cell infiltration. Several studies have suggested that, in response to 
aggregations of α-synuclein, CD4+/CD25− effector T cells promote 
the activation of microglia and its neurotoxic effects, and that 
CD4+CD25+FOXP3+ Treg cells inhibit such process, as well as 
neuronal apoptosis [22-25]. 

Various works have reported alterations in circulating lymphocytes 
from PD patients [26], including decreased levels of helper T cells (Th 
cells, CD3+CD4+) [27-29] and changes in the CD4+:CD8+ ratio, with 
a reduction in the number of CD4+ cells [27,30,31]. An abnormal 
distribution of CD4+ Th cells has also been reported, with increased 
levels of memory effector cells (CD4+CD45RO+) and naïve T cells 
(CD4+CD45RA+) [27,29,32,33]. In addition, the reduced numbers 
of CD4+ Th cells have been attributed to a decrease in the levels of 
Th2, Th17, and Treg cells, while a biased immune response in CD4+ 
Th1 cells has been reported, with an increased production of IFN-
gamma and TNFα, suggesting that CD4 Th1 cells are involved in the 
pathophysiology of PD [34].

Material and methods
Peripheral blood mononuclear cells (PBMCs) were isolated from 

whole blood samples from a PD patient with no comorbidities and a 
patient suffering from both SLE and PD, paired by age and sex. Then, 
the immune cell populations and subpopulations were characterized 
by flow cytometry as described by Álvarez-Luquin et al, [35]. The 
definition of each cell phenotype is described in the Supplementary 
Table 1.

Patient with Parkinson’s disease and systemic lupus 
erythematosus: A 60 years-old female patient, with a familial history of 
PD through her mother and maternal grandmother, was diagnosed in 
2012 with SLE and hypothyroidism, and with PD in 2001. The clinical 
picture started with rest tremor in her right hand, adding right-half 
bradykinesia in 2004, and rigidity of the upper right limb in 2006. 
The patient suffered from biphasic dyskinesias since 2011, as well as 
insomnia, symptoms of REM sleep behavior disorder (RSBD), nocturia, 
and impulse control disorder, with depression and apathy added later. 
On physical examination, the patient showed akinetic-rigid syndrome, 
hypophonia, hyposmia, and masked facies. A polysomnographic 
analysis showed a moderate obstructive sleep apnea syndrome (OSAS) 
and RSBD. The UPDRS score was 48, the UPDRS III score was 22 in 
off; Hoen and Yahr stage was 4; Schwab & England scale score was 
40%; and MOCA score was 18. A levodopa test was conducted in 2018, 
with a good response of 57%. Currently, the patient is under treatment 
with levothyroxine (150 mcg in the morning) for hypothyroidism; 
hydroxychloroquine (150 mg in the morning and the afternoon) for 
SLE; amantadine (150 mg in the morning and afternoon), levodopa/
carbidopa/entacapone (150/37.5/200 mg every 4 hours), rasagiline (1 
mg in the morning), and rotigotine (12 mg/day) for PD; quetiapine (150 
mg in the evening) for neuropsychiatric symptoms; and continuous 
positive airway pressure (CPAP) for OSAS.

Patient with parkinson’s disease: A 57 years-old female patient, 
with a familial history of PD through her father and paternal grandfather. 
No other relevant familial factors are reported. The clinical picture 
started in 2010 with a tremor disorder in the lower left limb. In 2015, 
the patient was diagnosed with PD by applying clinical questionnaires 
and a positive levodopa test. Recently, the patient showed sialorrhea, 
insomnia, and depression symptoms. Currently, she shows a clinical 
akinetic syndrome with bradykinesia and rigidity. The UPDRS score 

was 93, the UPDRS III score was 72 in off; Hoen and Yahr stage was 
4; Schwab & England scale score was 40%; and she scored 33 points 
in a Beck questionnaire, a result suggestive of a severe depression. The 
patient is being administered with levodopa/carbidopa (250/25 mg, 4 
times a day), pramipexol (3 mg, 3 times a day), and amantadine (100 
mg, 4 times a day); no treatment for any other pathology is being given.

Results
The analysis of cell phenotypes showed that the levels of total CD8+ 

T lymphocytes were 2 times higher in the PD/SLE patient than in the 
PD patient. With respect to regulatory populations, the percentages of 
non-Tregs and resting Tregs were 2 times lower in the PD/SLE patient 
compared to the PD patient. In contrast, the percentages of Tr1 and 
Th3 cells were about 2 times higher in the PD/SLE patient. On the other 
hand, the levels of CD8+ reg cells were approximately 7 times lower in 
the PD/SLE patient that in the PD patient, while those of regulatory 
functional CD8 were more than 10 times higher in the PD/SLE patient.
With regard to B cell subpopulations, the levels of functional Breg cells 
were about 2 times lower in the PD/SLE patient than in the PD patient. 
The levels of regulatory dendritic cells (B.7H1+ DCs, SLAM F1+ DCs, 
and CD205+ DCs) were 2-10 times higher in the PD/SLE patient than 
in the PD patient (Table 1).

Regarding monocyte subpopulations, the levels of non-classical 
HLA-DR+ monocytes were 8 times lower in the PD/SLE patient than 
in the PD patient, while the levels of IL-10+ non-classical monocytes 
were 4 times higher in the PD/SLE patient than in the PD patient. The 
levels of total and IL-10-producing intermediate monocytes were 2-5 
times higher in the PD/SLE patient than in the PD patient. The levels 
of total and HLA-DR+ classical monocytes were 5 times lower in the 
PD/SLE patient than in the PD patient, while those of IL-12+ classical 
monocytes were 20 times lower. On the contrary, the levels of M2-like 
monocytes were 20-fold higher in the PD/SLE patient compared to the 
PD patient (Table 1).

With respect to the proinflammatory subpopulations of dendritic 
cells, the levels of CD40+ dendritic cells were about 3 times higher in the 
PD/SLE patient than in the PD patient. The levels of TNFα-producing 
Th1 cells were 3 times lower in the PD/SLE patient with respect to the 
PD patient. For Th2 cells, the levels of IL-4-producing Th2 cells were 2 
times lower in the SLE patient than in the PD patient. Finally, the levels 
of IL-17-producing Th-17 cells were 3 times lower in the SLE patient 
than in the PD patient (Table 1).

Discussion
The pathogeny of PD and SLE could share an autoimmune base. 

Very few studies on the possible relation between these pathologies 
have been conducted. PD has been proposed to be an autoimmune 
spectrum disorder, since the migration of B cells to the central nervous 
system has been observed to cause activation and proliferation of Th17 
cells, accelerating the ongoing degeneration. Additionally, the presence 
of anti-α-synuclein, anti-tau, and anti-β amyloid antibodies has been 
detected in PD patients [36,37]. The high levels of proinflammatory 
cell populations are a hallmark of autoimmune diseases [38]. In PD, 
the immune response by itself is a chronic process that plays a role in 
neurodegeneration; by adding a highly inflammatory environment like 
SLE, the progression of PD will be faster.

The levels of regulatory cell populations herein analyzed are 
decreased in the PD/SLE patient, except for Tr1, Th3, and tolerogenic 
dendritic cells; while the differences were not significant, they could 
have some effect on inflammatory cell populations. Similarly, since 
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SLE is an autoimmune disorder mediated by autoantibodies, the 
observed decrease in the levels of functional Breg cells is interesting, 
considering that functional Bregs have been described to suppress the 
proliferation of other immune cells by secreting immunosuppressive 
cytokines like IL-10 and IL-35 [39,40]. However, our results do not 
show a significantly higher inflammation in the SLE/PD patient with 
respect to the PD patient [41,42]. Only the levels of CD40-expressing 
DCs were increased, because CD40 is involved in B cell activation; this 
finding could be linked to the pathophysiology of PD. It is noteworthy 
that the PD/SLE patient was under treatment with immunosuppressive 
drugs (hydroxychloroquine); this could explain the increased levels of 
regulatory cells (Tr1, Th3, and functional CD8 cells, as well as M2-like 
monocytes) in the PD/SLE patient [43,44]. 

Additionally, this drug interferes with autoantibody presentation, 
block antigen-induced response in T lymphocytes, decrease the 
production of inflammatory mediators, and inhibit the activation of 
Toll-like receptors [45].

The PD/SLE patient showed a chronic inflammatory response, 
common, but lower than a typical PD patient. This could be influenced 
by the base treatment. The coexistence of PD and SLE could accelerate 
the future progression of PD because the rate of dopaminergic 
neurodegeneration could be increased by the continued migration and 
signaling of proinflammatory cells [38].

Conclusion
The coexistence of PD and SLE in a patient led to an immune 

profile characterized by altered levels of some immunoregulatory 
and proinflammatory cell phenotypes, along with increased levels of 
CD40-expressing DCs. Since the latter factor is linked to auto-antibody 
production and inflammation, thus favoring he clinical deterioration 
in PD patients, the comorbidity with SLE could have impacted the 
progression of PD in this patient.
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