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Introduction
It is not well understood how neurodegenerative diseases occur in 

a specific person and when they start, but since they tend to develop 
in the elderly, aging itself is considered a risk. Thus, in many countries 
where life expectancy is growing, the number of patients continues to 
increase, but unfortunately there is no preventive or curative treatment.

Most neurodegenerative diseases are protein aggregation diseases 
such as Alzheimer's disease and Parkinson's disease characterized by 
the accumulation of intracellular and extracellular deposits made up of 
highly aggregated pathogenic proteins.

Knowing when, where and how these intracellular aggregates are 
formed is perhaps the most relevant knowledge for pathophysiology 
clarity. However, the answer has not yet been issued. One reason is that 
the tissue in the central nervous system contains various types of cells 
in a complicated way, and it is challenging to separate only particular 
cells, such as neurons or glial cells. Another reason is that even though 
a single cell could be isolated, it is tough to highly purify the protein 
aggregates only from the cell using the conventional biochemical 
analysis process. Therefore, experimental results are unreliable due to 
contaminants. 

Laser Microdissection (LMD), which has grown in the number of 
users in recent years, is an efficient way to solve these problems. This is 
because LMD is a device that can eliminate accidental contamination as 
much as possible. After all, the target will be cut when visually viewing 
the target under a microscope. The first inventor of the LMD process 
was Sergei Stepanovich Chashotin (1883-1973) and commonly used as 
a microsurgery instrument in the early 1960s. LMD currently has two 
distinct types of lasers, primarily infrared (IF) and ultraviolet (UV). 
Over the decades, it has been updated and improved from ultraviolet 
(UV) laser beams to high-energy nitrogen, infrared and carbon dioxide 
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lasers. LMD allows the precise separation of uniform cell populations 
or single cells from heterogeneous populations and also allows the 
separation of live cells in culture dishes [1]. Thus, LMD is also a fast 
cell isolation method and is an excellent tool for the preservation of 
genomic molecules. Currently, LMD is commonly used in various fields 
of medical research, from neuroscience, cancer, scientific research to 
biomarker discovery and clinical diagnosis.

Neurodegenerative disorders cause degeneration and damage 
to individual neurons, but the remaining cells are largely unaffected 
[2]. LMD is especially useful for studying neurodegenerative diseases 
because it can separate the specific cells with selective fragility from 
tissues, however, there are still many disadvantages. The LMD itself 
and related consumables are costly, so even though it is known that 
high purity purification is possible and more accurate results can be 
achieved, classical biochemical analysis is required. Furthermore, 
while the performance of LMD has improved, it is still uneasy about 
extracting submicron-order deposits produced within cells using 
commercially available LMD.

Here, we will present some typical examples examined by 
LMD technique, focusing on the application of LMD findings for 
neurodegenerative diseases to pathological research.
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Parkinson’s disease 
Parkinson's disease (PD) is a polyphyletic neurodegenerative 

disease with progressive deterioration of motor neuron. Prevalence 
rises gradually with age [3] and is the second most prevalent 
neurodegenerative disorder [4,5]. In developing countries, it 
is commonly estimated to be 0.3% of the total population and 
approximately 1% of people over the age of 60. PD exhibits ataxia, 
bradykinesia, hypokinesia, postural dysfunction, stiffness, leaning 
posture, tremor, and worsens bilateral vocal cord paralysis [6]. In 
addition to dysfunction of motor neuron, it has been shown that 
certain non-motor disfunctions such as olfactory dysfunction, visual 
disturbances, ocular motility disorders, neuropsychiatric symptoms 
such as depression and anxiety, and autonomic dysfunction are known 
as prodromal symptoms. Urological impairment, mood disorders and 
other neurobehavioral disturbances have also been identified [7,8].

The key pathological shift is the progressive degeneration of 
dopaminergic neurons in the substantia nigra pars compacta of the 
basal ganglia, which induces neural circuit dysfunction, including 
the motor cortex region and the basal ganglia [9-12]. With selective 
neuronal failure in substantia nigra pars compacta, Lewy 's body, 
consisting mainly of α-synuclein and inclusion bodies due to irregular 
deposits, becomes noticeable [13,14]. Degeneration of dopaminergic 
substantia nigra striatal neurons with Lewy bodies is considered a 
major neuropathological correlation for movement disorders in PD. 
In addition, similar damage appears in glutamatergic, cholinergic, 
GABAergic, tryptaminergic, noradrenalinergic and adrenergic neurons 
[15].

PD pathology involves ion channel activity, activity associated Ca2+ 
homeostasis, mitochondrial dysfunction, and increased metabolic 
stress [16-19]. In addition, in some familial PD cases, pathogenic 
mutations in the familial PD genes (PARK genes) have been identified, 
most of which are associated with increased metabolic stress [20-22]. 

Neuronal Ca2+ sensor proteins (NCS) bind to various interaction 
partners that react to changes in intracellular Ca2+ and activate different 
signaling pathways [23-25]. Neuronal Calcium Sensor 1 (NCS-1) is 
involved in a number of neural functions such as synaptic transmission 
and plasticity, neuronal survival and promotes mitochondrial function 
[26-28]. The appearance of NCS-1 in the brain increases during 
the neonatal phase and decreases with growth. However, increased 
expression is observed again during various cell disorders [29]. For 
example, the altered expression of NCS-1 modifies its relationship 
to target proteins, leading to disruption of dopaminergic signaling 
in multiple diseases, including schizophrenia and PD [28,30-34]. 
Therefore, NCS-1 is especially important in the context of activity-
related Ca2+ stress and dopaminergic neuronal vulnerability in PD 
[33,34]. 

Simons et al. quantified mRNA levels of Ca2+ stress-related genes 
during NCS-1 failure using wild-type and NCS-1 knock-out mice by 
integrating UV laser LMD and RT-qPCR approaches and they found 
that NADH-ubiquinone oxidoreductase chain 1 (ND1), neuron-specific 
enolase 2 (ENO2), mitochondrial uncoupling proteins UCP4 and 
UCP5, and a familial Parkinson's disease causative gene DJ-1 (PARK7) 
has been specifically decreased in the melanotic dopaminergic neurons 
of NCS-1 KO mice [35].

Huntington's disease
Huntington's disease (HD) is an autosomal dominant, progressive 

neurodegenerative disease that occurs in adults. HD has a specific 

phenotype of distinct movement disturbances, clinical symptoms, and 
cognitive disability. Motor neuron symptoms include chorea, dyskinesia, 
and dystonia. Psychiatric symptoms such as depression, anxiety, and 
sleep disorder appear to precede motor symptoms [36]. Cognitive 
deterioration presents in low concentration, difficulty in remembering 
newly learned information, poor language skills, disrupted speech and 
impaired vision. Stiffness of motor neuron and dementia predominates 
during the disease progresses. 

HD displays neuropathological symptoms in many areas of the 
brain, with the most severe degeneration occurring in the caudate 
nucleus and putamen. The HD causative protein is huntingtin (htt) 
on chromosome 4. An unstable extension of the CAG (glutamine-
encoding trinucleotide) repeats occurring in the first exon of the 
Interest Transcript 15 (IT 15) gene in HD patients. The htt glutamine 
tail is usually elongated 8 to 36 times in the healthy person, whereas 41 
times or more in the HD group. HD can be seen with htt having 38 or 
more repeats of glutamine, but in rare cases it has been documented 
that symptoms are not evident even with up to 41 repeats [37]. 

Some studies have shown a clear inverse association between 
the number of repeats and the age at onset of HD [38-40]. Neuronal 
damage occurs in GABAergic neurons, which up 95% of the striatum 
cells [41] and dysfunction of the striatal cortical pathway and loss of 
pyramidal cells is widespread [42]. Striatal neurons are locally lost 
in HD; therefore, HD is also an attractive candidate for stem cell 
transplantation therapy. Transplantation of stem cells to the striatum 
has also been shown to improve motor and cognitive dysfunction in 
animal models [43,44]. In addition, mesenchymal stromal and neural 
stem cells (NSCs) are tested for HD stem cell therapy [45,46]. 

Fetal tissue contains different cells, so it is important to isolate the 
correct source of the cells.

In order to pick up the cells correctly, Andre et al, established a 
new experimental method for the LMD extraction of samples from 
brain slices [47]. The optimum tissue section thickness for LMD is 
usually 4-15 μm [48], but some studies have been conducted with 
slices up to 200 μm using UV laser cutting [49]. In their experiments, 
they successfully cut 400 μm organ-type slices using LMD, further 
separating the HD transplanted stem cells from the surrounding host 
tissues and analyzing them with RT-qPCR.

Multiple system atrophy
Multiple System Atrophy (MSA) is an adult sporadic 

neurodegenerative disorder. Olivopontocerebellar atrophy (OPCA), 
striatonigral degeneration (SND) and Shy-Drager syndrome (SDS) are 
all included in the MSA. MSA affects approximately 3/ 100,000 people 
annually [50,51]. The average age at onset is between 50 and 75 years 
[52,53]. The incidence rises to approximately 12 per 100,000 over 70 
years of age [54]. 

MSA causes a relatively rapid deterioration of the central nervous 
system with an overall survival period of 6-10 years [55,56]. 20-75% 
of MSA patients include prodromal stages of non-motor symptoms, 
including cardiovascular autonomic dysfunction, genitourinary and 
sexual dysfunction, orthostatic hypotension, REM sleep behavior 
disorder, and respiratory disorders preceding movement disorders. as 
well [57]. There are two distinct clinical subtypes, the MSA-P (mainly 
Parkinsonism) and the MSA-C (mainly cerebellar ataxia). MSA-P 
refers to patients with signs of Parkinson's disease, such as postural 
stiffness and dysfunction, bradykinesia, and tremor. This definition 
includes patients that have historically been diagnosed with SND. 
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MSA-C contains more prevalent cerebellar signs such as eye movement 
dysfunction, cerebellar dysarthria, and ataxia in the limb. MSA-C 
typically involves patients previously known as OPCA classical. Both 
phenotypes are usually observed in patients at the later stage of the 
disease [58-64]. 

MSA confirms high-density ubiquitinated α-synuclein aggregates 
containing protein aggregates known as argyrophilic glial cytoplasmic 
inclusion bodies (GCI) in oligodendrocytes [53,65-68]. GCIs are 
emerging from the early stages of neuronal failure, and found to remain 
even though several of the cells have lost. It is also present in the nucleus 
of oligodendrocytes and the cytoplasm [52]. 

It is suspected that α-synuclein aggregation contributes to disruption 
of oligodendrocytes in the process of neuronal myelination, leading 
to microglial activation, and subsequent release of α-synuclein from 
defective oligodendrocytes. Adjacent neurons can take extracellularly 
released α synuclein. This initiates the next aggregation inside the 
neuron cell. In addition, it is thought that toxic α-synuclein will spread 
to neurons in other synaptic brain regions in a prion-like manner [69-
75]. The lack of practical support for local neurons for oligodendrocytes 
and the effects on neurons of α -synuclein inclusion bodies eventually 
contribute to axonal dysfunction, neuronal cell death and reactive 
astrocytes [53,76]. 

A genome-wide expression profiling analysis was performed by 
preparing RNA samples from cerebellar white matter of MSA patients 
and healthy individuals using LMD [77]. NF1 (neurofibromatosis 1) 
associated with the myelination process, PLP1 (proteolipid protein 1) 
involved in the development of oligodendrocytes and maintenance of 
axons, and ERMN (Ermin) involved in the formation of myelin and 
in the maintenance and stabilization of myelin sheaths, were down-
regulated in patients with MSA-C. Whereas GGCX (gamma-glutamyl 
carboxylase) gene (OMIM: 137167) was upregulated in MSA patients 
that are specifically functionally associated with myelination. GGCX 
is necessary for the activation of vitamin K-dependent proteins [78] 
and mutations in this gene cause "GGCX syndrome" (OMIM: 137167). 
Vitamin K has been shown to postpone fibrosis of α-synuclein in vitro 
by the interaction of α-synuclein at a particular site at the N-terminus 
[79].

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease 

characterized by degenerative changes in both upper and lower motor 
neurons [80,81]. 10% of ALS is known as familial ALS (FALS). Almost 
all these cases are inherited in an autosomal dominant manner. The 
remaining 90-95% of cases of ALS are sporadic ALS (SALS) with no 
family history [82].

Superoxide dismutase1 (SOD1) is a 153 amino acid metal enzyme, 
one of the three superoxide dismutase presents in humans, and was the 
first molecule shown to be associated with ALS [83]. SOD1 binds to 
copper and zinc in order to form a very stable homodimer. Mutations 
in the SOD1 gene are associated with a 50-80% reduction in enzyme 
activity [83,84] indicating that loss of dismutase activity results in 
disease. However, later studies have shown that dismutase activity is 
not associated with disease severity, suggesting that toxic acquisition 
of functional mechanisms could be working [85]. Recent meta-
analyses data have shown that pathogenic variants in SOD1 account 
for approximately 15-30% of FALS and less than 2% of SALS cases [86]. 
The majority of SOD1 gene mutations are missense mutations, and the 
D90A variant is the most common in the world. 

TAR DNA-binding protein 43 (TDP-43) is an etiological protein 
of ALS present in ubiquitinated inclusion bodies located in spinal cord 
neuron cytoplasm in patients with SALS [87-89]. The accumulation of 
ubiquitin-positive TDP-43 in the brain and spinal cord is considered a 
pathological characteristic of ALS [90-92]. TDP-43 is composed of 414 
amino acids and has a signal for nuclear localization and export [93]. 
It is normally located in the nucleus and is involved in multiple RNA 
processing steps including pre-mRNA splicing, mRNA stability control, 
mRNA transport, translation, and non-coding RNA regulation [94-96].

Homozygous TDP-43 null mice are non-viable, suggesting that 
TDP-43 is central to embryonic development [97-99]. 

ALS is one of the diseases mostly used in the study of LMD, and its 
efficacy is being studied [100-103]. Recently, Krach et al. isolated motor 
neurons from the lumbar area of SALS patients with early respiratory 
failure using LMD and profiled the expression of RNA [104]. As a 
consequence, they found that the CK1E protein encoded by CSNK1E, 
a member of the CK1 family of serine-threonine protein kinases, plays 
a key role in various cellular processes, such as DNA replication and 
repair, interacted with TDP-43. Increased expression of CK1E resulted 
in increased TDP-43 phosphorylation and thus these findings suggest 
that CK1E can influence TDP-43 phosphorylation and may be a 
therapeutic target for ALS.

Alzheimer's disease
Alzheimer's disease (AD) accounts for up to 80% of all dementia 

diagnoses [105]. Postmortem brain tissue assessment is needed for 
a definitive diagnosis of AD. Relatively new clinical parameters such 
as biomarker identification of cerebrospinal fluid (CSF) and positron 
emission tomography (PET) have also become useful in recent years 
[88]. Available drug therapy in patients at all stages of AD dementia 
is an inhibitor of cholinesterase. Memantine is also used for mild to 
severe AD dementia. These medicines have been shown to enhance the 
quality of life of both patients and caregivers when prescribed for the 
disease at the right time however, they do not slow down or reverse the 
progression of disease [106]. 

Most cases of AD are sporadic. Multiple factors, such as 
environmental exposure, genetic risk factors, mitochondrial haplotypes, 
age and gender, have been identified, but the cause of AD development 
remains unknown [88,107,108]. Approximately 1% of AD cases are 
associated with familial mutations in either the amyloid protein 
precursor (APP) or the presenilin 1 (PS1) and presenilin 2 (PS2) genes 
specifically involved in APP processing. 

Cleavage of APP on the cell membrane by α-secretase does not form 
pathological amyloid-β (Aβ) peptides. On the other hand, cleavage by 
β and γ-secretase produces the disease-causing Aβ 40 or Aβ 42 peptide, 
which is released into the extracellular space and becomes a major 
component of the extracellular aggregate amyloid plaque [106,109-
112]. In several in vitro and in vivo studies using human tissues and 
transgenic mice, extracellular Aβ accumulates prior to the formation 
of extracellular plaques that directly affect synaptic function and has 
been shown to cause severe memory loss [113-115]. It has also been 
documented that Aβ is present in neurons, develops β-and γ-secretase 
cleavage in the trans-Golgi network [116], endoplasmic reticulum 
(ER), endosomes, lysosomes [117], mitochondrial membrane. 

[118] In addition, secreted Aβ peptides can be internalized by 
receptor-mediated and non-receptor-mediated endocytosis [119-121]. 
Extensive studies also support the notion that soluble Aβ oligomers are 
the most toxic species affecting multiple early molecular pathways that 
lead to synaptic dysfunction in AD [120]. 
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The discovery of familial AD mutations in the APP, PS1, and 
PS2 genes led to an amyloid cascade hypothesis that attributed the 
emergence of Aβ to disease. In fact, overproduction of Aβ peptide is 
observed early in patients who develop AD and is important for AD 
pathology [122]. However, there have been studies of cases in which 
cognitive dysfunction does not occur while having substantial Aβ 
[123,124] and it is difficult to understand AD on its own with an 
amyloid cascade hypothesis. 

Intracellular neurofibrillary tangles (NFTs) are another essential 
component of AD. Tau is a microtubule-stabilizing protein that, 
when hyperphosphorylated, falls out of microtubules, leading to tau 
destabilizing and disrupting transport mechanisms [125]. Memory 
impairment in AD is closely correlated with hippocampal synaptic 
defect [126-128]. As a promoter of axonal microtubule assembly, tau 
plays a role in sustaining neuronal projection and influencing synaptic 
function. Loss of tau binding to microtubules is leading to synaptic 
dysfunction. However, it is unclear how tau mechanically retains 
synaptic plasticity or how the pathogenic version of tau impairs it. The 
widespread presence of Aβ in the brain does not seem to contribute to 
the development of AD unless the tau is present in the affected area. 
These findings support the idea that synergistic interactions between 
Aβ and Tau are necessary to cause neurodegeneration in AD [129,130]. 

The hippocampus and its surrounding area are critical for memory 
function and are severely impaired in the early stages of AD. The 
pathology seen in the hippocampus consists of extreme neuronal loss, 
severe plaque deposition, neurofibrillary tangle (NFT) formation, and 
neuroinflammatory reactions. The anterior hippocampal limb, one area 
of the hippocampus, tends to have a distinct pathological AD profile 
relative to the other regions of the medial temporalis region. 

Early in the AD disease phase, deposits containing "lake-like" 
diffusive Aβ occur in the anterior hippocampal limb, with no aggregate 
morphology seen when forming with amyloid fibrils [131,132]. 
Components of this particular diffuse Aβ deposit were studied in 
conjunction with LMD and mass spectrometry in both sporadic AD, 
inherited and familial AD, and Familial British Dementia (FBD) and 
Familial Danish Dementia (FDD) brain amyloidosis and found that 
the deposit contain three forms of amyloid peptides Aβ, ABri, and 
ADan. ABri and Adan are molecules formed by the cleaving of a type 
II transmembrane protein called an endogenous 2B membrane protein 
(BRI 2). ABri and ADan cause deposits of amyloid in the blood vessels 
and brain. Since BRI 2 interacts with APP, the interaction between Aβ 
and ABri or ADan may also be relevant to influence the rate of amyloid 
production or this aggregation [133-135].

Endosomal dysfunction is one of the early pathologies observed in 
the brain of AD [136]. The endosomal pathway performs many of the 
main functions of the neurons, including the internalization of nutrients 
and growth factors, the recycling of receptors and the signaling of 
appropriate intracellular pathways. A group of small ras-related GTPase 
(rab) proteins control vesicular transport to early late endosomes and 
other organelles along the endosome-lysosomal pathway [137]. Early 
endosome effector rab5 and late endosome component rab7 regulate 
nervous growth factor (NGF) signaling [138,139]. Ginsberg et al. 
collected a population of neurons only from deceased subjects using 
LMD and analyzed endosomal markers selected by a customized 
microarray analysis. As a result, there has been a significant upregulation 
of the early endosome effector genes, including the late endosome genes 
rab4 and rab5 [140].

In another case of the use of LMD for the study of AD, the expression 
profile of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, 

a mice model of Down's Syndrome (DS) and Alzheimer's Disease 
(AD), was examined. Alldred et al isolated CA1 pyramidal neurons 
only by use of LMD and found that there was a down-regulation of 
the neurotrophin-associated receptor [141]. Neurotrophin receptors, 
especially BDNF and TrkB, are potent regulators of synaptic plasticity, 
learning, and memory [142].

Frontotemporal lobar degeneration
Frontotemporal lobar degeneration (FTLD) is a progressive 

neuropathy with severe behavioral, personal and verbal symptoms. It 
accounts for around 20% of dementia diseases [143]. The main FTLD 
syndromes are frontotemporal dementia (bvFTD) with prominent 
personality, behavioral abnormalities, progressive non-fluent aphasia 
(PNFA) and semantic dementia (SD) in which the meaning of terms 
and products is not understood. Even if the pathological form is 
different, the clinical picture appears according to the topography of 
the lesion. Pathologically, the majority of FTLD examples aggregate 
particular proteins in nerve or glial cells to form inclusion bodies. Tau, 
TDP-43, and fused in sarcoma (FUS) have been described as major 
constituent proteins, comprising three major pathological groups: 
FTLD-tau, FTLD-TDP, and FTLD-FUS.

The histopathological characteristic of FTLD-U is ubiquitin-
positive, tau, and α-synuclein-negative intraneuronal inclusions 
primarily in the dentate gyrus and frontotemporal cortex of the 
hippocampus [144]. LMD was used to isolate the ubiquitinated 
inclusion of hippocampal dentate gyrus in patients with FTLD-U and 
the components were detected by LC-MS/MS. 73 candidate proteins 
with FTLD-U-specific expression changes were detected, of which 54 
were found to be selectively increased in expression and 19 were found 
to be decreased in FTLD-U [145].

Pick's disease is a disease included in FTLD and is characterized 
as a constituent by Pick 's body containing phosphorylate tau. Eight of 
a total of 16 alternative splicing exons have six central nervous system 
(CNS) isoforms and six additional peripheral nervous system (PNS) 
isoforms [125]. Alternative splicing mainly affects the N-terminal 
projection region and the microtubule binding domains (MBDs), 
producing 4-repeat (4R) and 3-repeat (3R) tau. These two isoforms are 
preserved in a balanced ratio (1:1) in the adult brain and disruption 
of the 3R to 4R tau expression ratio induces AD and other tauopathy 
[146]. The most studied function of Tau is to promote the construction 
and stability of microtubules, supported primarily by studies using 
cell-free in vitro systems, and it has been found that 4R tau has more 
robust microtubule support activity than 3R tau [147]. Using LMD 
method, Ohkubo et al. was isolated by approximately 500 of Pick bodies 
and analyzed by a mass spectrometer. Consequently, they found that 
phosphorylate tau (69 kDa, tau 69) isoforms were accumulated in Pick 
bodies [148].

Conclusions
Protein aggregation disorders are often caused by aging and the 

number of patients is expected to continue to increase as life expectancy 
rises. However, many mechanisms behind these diseases have not 
yet been explained. In addition, unfortunately, there are currently no 
known preventive or curative approaches. 

One of the key reasons for this is that the components of protein 
aggregates and disease-specific deposits have not been clarified.

As we have seen in the study of neurodegenerative diseases, it has 
become possible to isolate only particular cells from a complex mixture 
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of tissues with LMD and to examine the components of nucleic acids 
and proteins. LMD is now used to address these issues in the field of 
neurodegenerative diseases. High-precision target separation using 
LMD approach is expected to accurately identify disease-derived 
deposit components when combined with high-sensitivity mass 
spectrometry. It would be fantastic if this could soon elucidate the real 
pathophysiology of protein aggregation and improve treatment and 
preventive methods.

The current pathological classification of neurodegenerative 
diseases associated with protein aggregation deposits is based 
on proteins with irregular accumulation. In order to make an 
appropriate diagnosis based on clinical evidence, it is important to 
explain the pathophysiology of neurodegenerative diseases. High-
definition extraction of the research targets by the LMD device and 
the establishment of a highly accurate sample-based analysis method 
would become more important.
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