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Abstract
Instability of CAG triplet repeat encoding poly-glutamine (polyQ) stretch in the androgen receptor (AR) gene has been implicated as a putative mechanism in spinal 
bulbar muscular atrophy (SBMA) or Kennedy’s disease. Although the underlying mechanisms are not completely understood, suggested pathological pathways of 
SBMA involve the formation of AR nuclear and cytoplasmic aggregates. Here we discuss the role of polyQ chain length extension in the pathophysiology of SBMA 
and the potential therapeutic targets.
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Instability of repetitive DNA sequences within the genome is 
associated with a number of human diseases [1]. The largest group of 
triplet repeat diseases remains those in which the expansion resides 
in the gene coding sequences and comprises expression of expanded 
poly-glutamine (polyQ) tracts [2-4]. Among such DNA repeats, 
expansion of trinucleotide repeats is recognized as a major cause of 
neurodegenerative diseases [5,6]. For example, instability of CAG 
triplet repeat encoding polyQ stretches in the target gene has been 
implicated as a putative mechanism in inherited neurodegenerative 
diseases such as Huntington’s and Kennedy’s or Spinal bulbar 
muscular atrophy (SBMA). Although the target proteins associated 
with these phenotypes are quite distinct, the mutated forms share an 
expanded CAG gene product as a mediator of protein misfolding/
aggregation [7,8]. The SBMA is an X-linked progressive motor neuron 
disease, without affecting other neurons [9,10]. The clinical features of 
SBMA correlate with a loss of lower motor neurons in the brainstem 
and spinal cord, and with marked myopathic and neurogenic changes 
in skeletal muscle. Numerous studies have shown that that androgen 
receptor (AR) gene (Figure 1) with expanded CAG codon repeats 
exhibits selective neurological phenotypes and neurodegeneration and 
causes spinal and SBMA or Kennedy’s disease [11-14]. This pathogenic 
repeat expansion in the AR gene leads to loss of AR function and 
nuclear aggregation in motor neurons. 

It has been reported that initiation of SBMA pathogenesis is 
closely related to the formation of androgen-dependent intracellular 
AR aggregates due to production of aberrant conformational changes 
in the AR protein [11,15,16]. These conformational changes could be 
linked to the release of associated chaperone protein complexes and/
or to the AR nuclear translocation. In fact, nuclear localization appears 
to be associated with AR-polyQ neurotoxicity as cytoplasmic retention 
of AR-polyQ has been correlated with a decrease in its toxicity [17,18]. 
Normal individuals have ~20 repeats, while SBMA patients have 
~40 or more CAG repeats. Extended polyQ chain length induces the 
formation of inclusion bodies in the affected neurons, suggesting that 
proteolytic cleavage may be responsible for enhanced toxicity of the AR 

gene products [10,11]. Interestingly, the AR-polyQ becomes toxic only 
after its activation by endogenous androgen ligands, possibly because 
of aberrant androgen-induced conformational changes of the AR-
polyQ, which generate misfolded species [16]. Certain AR coregulatory 
proteins are also reported to be sequestered into the nuclear inclusions 
in SBMA supports the notion that AR transcriptional dysregulation 
may be a potential pathological mechanism leading to SBMA. Due to 
critical role of these coregulatory proteins including coactivators in 
the AR-mediated gene regulation, any dysregulation of AR:coactivator 
binding may perturb normal AR physiology leading to disease 
conditions [19,20]. 

Figure 1. A diagram showing possible physiological and pathological scenarios due to 
altered polyQ chain length in the AR.
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In PolyQ neurodegenerative disorders including SBMA, the 
mutant protein disrupts multiple downstream pathways, and toxicity 
likely results from the cumulative effects of altering a diverse array of 
cellular processes, suggesting that potential treatments targeting a single 
downstream pathway are likely to be incomplete and unsuccessful. 
In recent years, our understanding of the underlying mechanisms 
that appear to play a significant role in SBMA pathophysiology has 
increased dramatically, and several of these pathways and mechanisms 
have been investigated as possible therapeutic targets. Some of 
the therapeutic strategies that have been tested in SBMA include 
gene silencing, protein quality control and/or increased protein 
degradation, androgen deprivation, and modulation of AR activity 
and functions. Evidence from various studies that include both in vitro 
and in vivo models support a role for testosterone binding and nuclear 
translocation of the AR as the trigger for SBMA [21-27]. However, 
trails using antiandrogen therapy, commonly used in the treatment 
of advanced prostate cancer, yielded disappointing findings, despite 
highly promising animal studies. Other studies have shown AR:HSP70 
complex and small molecules such as trehalose as a potential therapeutic 
target for SBMA [25,28]. Based on these studies, a potential therapeutic 
model can be proposed (Figure 2). Finally, it is also now clear that in 
addition to a greater understanding of the molecular mechanisms that 

underlie disease, the development of an effective disease modifying 
therapy for polyQ-mediated neurodegenerative diseases such as SBMA 
will require a coordinated research effort with diverse areas of scientific 
and clinical expertise as well as patient groups.
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Figure 2. A therapeutic model of the regulation of the AR polyQ.  The expanded AR 
polyQ tract allows transition into a distinct conformation that may cause toxicity as a 
monomer or it may self-associate to form toxic oligomers, which could assemble into larger 
aggregates leading to intracellular inclusions. The principal toxic effects of the aberrantly 
folded protein may include alterations in transcription, metabolism or impairment of the 
proteasome or stress response pathways. Under pathological conditions (due to polyQ 
chain length extension), the structure of natively-folded functional WT AR protein (ARWT) 
is compromised due to partial folding (ARpolyQ) that could result in unwanted degradation. 
These polyQ containing peptide fragments enter the nucleus, sequester AR coregulatory 
proteins resulting into formation of intranuclear inclusions and thereby blocking the AR-
mediated transcriptional regulation. The AR structure modulators (A) can convert (ARpolyQ) 
back into (ARWT) conformation, and thereby restoring proper functions of protein by 
allowing it to translocate to nucleus where it binds to androgen response element (ARE) 
DNA sequences and interacts with critical coregulatory proteins (shown by different colors 
and shapes) leading to the AR target gene transcription. On the other hand chaperone-
dependent ubiquitin ligases (B) may facilitate client protein ubiquitination and promote AR 
polyQ clearance by the proteasome. This strategy may alleviate polyglutamine toxicity by 
facilitating degradation of the mutant protein. 
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