Spinal bulbar muscular atrophy, an inherited neurodegenerative disease: Potential mechanisms and therapeutic targets

Raj Kumar*
Department of Basic Sciences, Geisinger Commonwealth School of Medicine, Scranton, PA, USA

Abstract
Instability of CAG triplet repeat encoding poly-glutamine (polyQ) stretch in the androgen receptor (AR) gene has been implicated as a putative mechanism in spinal bulbar muscular atrophy (SBMA) or Kennedy's disease. Although the underlying mechanisms are not completely understood, suggested pathological pathways of SBMA involve the formation of AR nuclear and cytoplasmic aggregates. Here we discuss the role of polyQ chain length extension in the pathophysiology of SBMA and the potential therapeutic targets.

It has been reported that initiation of SBMA pathogenesis is closely related to the formation of androgen-dependent intracellular AR aggregates due to production of aberrant conformational changes in the AR protein [11,15,16]. These conformational changes could be linked to the release of associated chaperone protein complexes and/or to the AR nuclear translocation. In fact, nuclear localization appears to be associated with AR-polyQ neurotoxicity as cytoplasmic retention of AR-polyQ has been correlated with a decrease in its toxicity [17,18]. Normal individuals have ~20 repeats, while SBMA patients have ~40 or more CAG repeats. Extended polyQ chain length induces the formation of inclusion bodies in the affected neurons, suggesting that proteolytic cleavage may be responsible for enhanced toxicity of the AR gene products [10,11]. Interestingly, the AR-polyQ becomes toxic only after its activation by endogenous androgen ligands, possibly because of aberrant androgen-induced conformational changes of the AR-polyQ, which generate misfolded species [16]. Certain AR coregulatory proteins are also reported to be sequestered into the nuclear inclusions in SBMA supports the notion that AR transcriptional dysregulation may be a potential pathological mechanism leading to SBMA. Due to critical role of these coregulatory proteins including coactivators in the AR-mediated gene regulation, any dysregulation of AR:coactivator binding may perturb normal AR physiology leading to disease conditions [19,20].

Figure 1. A diagram showing possible physiological and pathological scenarios due to altered polyQ chain length in the AR.

Correspondence to: Raj Kumar, Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Rm #3034 MSB, Scranton, PA-18509, USA, Phone: 570-504-9675, FAX: 570-504-9660, E-mail: rkumar@tcmc.edu

Key words: Androgen receptor; spinal bulbar muscular atrophy; Neurodegenerative disease; aggregation

Received: July 06, 2017; Accepted: August 28, 2017; Published: August 31, 2017
In PolyQ neurodegenerative disorders including SBMA, the mutant protein disrupts multiple downstream pathways, and toxicity likely results from the cumulative effects of altering a diverse array of cellular processes, suggesting that potential treatments targeting a single downstream pathway are likely to be incomplete and unsuccessful. In recent years, our understanding of the underlying mechanisms that appear to play a significant role in SBMA pathophysiology has increased dramatically, and several of these pathways and mechanisms have been investigated as possible therapeutic targets. Some of the therapeutic strategies that have been tested in SBMA include gene silencing, protein quality control and/or increased protein degradation, androgen deprivation, and modulation of AR activity and functions. Evidence from various studies that include both in vitro and in vivo models support a role for testosterone binding and nuclear translocation of the AR as the trigger for SBMA [21-27]. However, trials using antiandrogen therapy, commonly used in the treatment of advanced prostate cancer, yielded disappointing findings, despite highly promising animal studies. Other studies have shown AR-HSP70 complex and small molecules such as trehalose as a potential therapeutic target for SBMA [25,28]. Based on these studies, a potential therapeutic model can be proposed (Figure 2). Finally, it is also now clear that in addition to a greater understanding of the molecular mechanisms that underlie disease, the development of an effective disease-modifying therapy for polyQ-mediated neurodegenerative diseases such as SBMA will require a coordinated research effort with diverse areas of scientific and clinical expertise as well as patient groups.

References
10. Kumar (2012) Role of Androgen Receptor PolyQ Chain Elongation in Kennedy’s Disease and Use of Natural Osmolytes as Potential Therapeutic Targets. IUBMB Life 64: 879–884. [Crossref]
18. Montie HL, Pestsell RG, Berry DE (2011) SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. J Neurosci 31: 17425–17436. [Crossref]


27. Nedelsky NB, Pennuto M, Smith RB, et al. (2010) Native functions of the androgen receptor are essential to pathogenesis in a drosophila model of spinobulbar muscular atrophy. *Neuron* 67: 936–952. [Crossref]


Copyright: ©2017 Kumar R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.