Journal of Stem Cell Research and Medicine

Research Article ISSN: 2398-6530

PTCH1 pathway network model in diffuse-type gastric cancer and epithelial mesenchymal transition

Shihori Tanabe1*, Kazuhiko Aoyagi2, Hiroshi Yokozaki3 and Hiroki Sasaki4

- ¹Division of Risk Assessment, Biological Safety Research Centre, National Institute of Health Sciences, Japan
- ²Department of Clinical Genomics, National Cancer Centre Research Institute, Japan
- ³Department of Pathology, Kobe University of Graduate School of Medicine, Japan
- ⁴Department of Translational Oncology, FIOC, National Cancer Centre Research Institute, Japan

Abstract

Patched 1 (PTCH1) gene plays an important role in the Hedgehog signalling in cancer. To reveal the role of PTCH1 and the network in epithelial mesenchymal transition (EMT), gene expression and molecular network of the PTCH1 was investigated in mesenchymal stem cells (MSCs) and diffuse-type gastric cancer (GC). The PTCH1 gene expression was up-regulated in diffuse-type GC compared to MSCs. PTCH1 network model was generated with the gene expression profiling of the molecules related to PTCH1 and EMT. The signalling and molecular network of PTCH1 was analyzed using several databases, including cBioPortal for Cancer Genomics, Kyoto Encyclopedia of Genes and Genomes (KEGG), BioGRID, VaProS and Ingenuity Pathways Analysis (IPA) databases. The PTCH1 model network contains cancer-related genes such as cadherin 1 (CDH1), catenin beta 1 (CTNNB1) and transforming growth factor beta receptor 3 (TGFBR3). The results revealed a PTCH1 pathway network model in cancer and stem cells.

Introduction

The Patched (PTCH) protein is the receptor for Sonic Hedgehog (Shh) and functions in tumorigenesis and the development of embryonic structures through inhibiting cancer-related pathways by the inhibition of the signalling of the seven-transmembrane protein Smoothened (SMO) [1]. It has been shown that the binding of Shh to Patched 1 (PTCH1) prevents its inhibition of SMO [1]. SMO, gliomaassociated oncogene 1 (GLI1), and forkhead box M1 (FOXM1), which are implicated in tumour formation, are up-regulated in cervical cancer tissues and are correlated with the clinical stage of tumours, whereas the expression of Shh, PTCH1 and GLI1 proteins is correlated with the pathological grade [2]. Internalization and degradation of PTCH1 is regulated by Itchy homolog (Itch), E3 ubiquitin-protein ligase, and the C-terminal domain of PTCH1, leading to Gli activation and cell death [3]. The Sonic Hedgehog pathway consists of SHH, PTCH1, SMO, Gli1, Gli2, Gli3 and regulates the transcription of Gli1, PTCH1, Cyclin D1, c-Myc and Bcl-2 [4]. The Hedgehog (Hh) signalling pathway and p53-mediated DNA repair mechanisms are dysregulated in human cancer, and this dysregulation is associated with the PTCH1 homolog, PTCH53, activated by p53 [5]. The expression of Hh signalling pathway molecules in articular cartilage during adjuvant-induced arthritis is up-regulated, which provides justification for the clinical implication of Hh signalling [6]. The micro-RNA miRNA-206 was found to be down-regulated in the Shh subgroup of medulloblastoma in analysis of Smo+/+ transgenic mice and Ptch1+/- knockout mice, which suggests the role of miRNAs in tumour suppression [7].

Epithelial-mesenchymal transition (EMT) is the phenotypic shift from epithelial phenotype into mesenchymal phenotype of the cells, which contributes to the cancer metastasis and malignancy. EMT occurs in cancer development and the EMT contributes into cancer stem cell (CSC) maintenance [8]. To investigate the role of EMT in

Shh pathways in cancer, we compared gene expression of PTCH1 in mesenchymal stem cells (MSCs) and diffuse-type gastric cancer (GC). MSCs are stem cells with mesenchymal features and diffuse-type GC exhibits more mesenchymal-like features compared to intestinal-type GC. It may be possible to reveal the EMT-related molecular networks by comparing MSCs and diffuse-type GC. We have previously shown the involvement of catenin beta 1 (CTNNB1) in diffuse-type GC compared to MSCs [9]. During the process of database analysis with cBioPortal for Cancer Genomics, PTCH1 was found to be co-altered with CTNNB1 in stomach adenocarcinoma. It is known that tissue-specific accumulation of genetic mutations in human adult stem cells is an important factor for disease prognosis [10]. In this article, we focused on the regulation and role of PTCH1 in stem cells and cancer.

Materials and methods

Gene expression analysis of MSCs and GC

The gene expression in MSCs (6 early- and 6 late- stage cultures, n=12) and diffuse-type GC (n=5) was analysed with GeneChip Human Genome U133 Plus 2.0 microarray (Affymetrix, Santa Clara, California, USA), as previously described [9,11,12]. Briefly, total RNA purified from the cells were biotinylated and hybridized to the microarray. The signal intensity in each gene was analysed and

*Correspondence to: Shihori Tanabe, Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan, Tel: 81-44-270-6686, Fax: 81-44-270-6703, E-mail: stanabe@nihs.go.jp

Key words: EMT, gastric cancer, MSC, PTCH1, stem cell

Received: August 10, 2018; Accepted: August 23, 2018; Published: August 28, 2018

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 1-15

compared between MSCs and diffuse-type GC. The microarray data for MSCs and diffuse-type GC are available to the public in NCBI's Gene Expression Omnibus (GEO) database and are accessible via GEO Series accession number GSE7888 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7888) and GSE42252 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42252), respectively [9,11,12].

Cell culture

Human MSCs from bone marrow (Lonza, Walkersville, MD, USA) were cultured in MSC growth medium (MSCGM; Lonza #PT-3001; MSC basal medium supplemented with mesenchymal cell growth supplement, L-glutamine and penicillin/streptomycin) at $37^{\circ}\mathrm{C}$ in a CO $_2$ (5%) incubator. Cells were passaged according to the manufacturer's protocol; however a slight modification was made to use trypsin-EDTA solution (Lonza #CC-3232). Lot numbers of the human MSC batches were as follows: #4F1127, #4F0312, #5F0138, #4F1560, #4F0591 and #4F0760. Informed consent was obtained for Poietics human MSC systems (Lonza) [12]. Passage numbers of MSC cultures were #4 and #22 for #4F1127, #4 and #28 for #4F0312, #4 and #24 for #5F0138, #5 and #28 for #4F1560, #4 and #28 for #4F0591, and #4 and #28 for #4F0760.

Diffuse-type GC tissues

Diffuse-type GC tissues were originally provided by the National Cancer Centre Hospital after obtaining written informed consent from each patient and approval from the National Cancer Centre Institutional Review Board. All cancer specimens were reviewed and classified histopathologically according to the Japanese Classification of Gastric Cancer. Following surgical extraction, tissue specimens were immediately frozen with liquid nitrogen and stored at -80°C until microarray analysis [9,11]. Existing, publicly available data were analysed in the article.

Analysis with cBioPortal for cancer genomics

The cancer genomics data analysis related to CTNNB1 was performed using cBioPortal for Cancer Genomics (http://www.cbioportal.org) [13,14]. The term "PTCH1" was searched in the cBioPortal for Cancer Genomics, and the cross-cancer alteration summary for PTCH1 was obtained. Studies of stomach adenocarcinoma (TCGA, Nature 2014) were further analysed for pathway network analysis [15].

Gene ontology analysis of PTCH1

Gene Ontology of PTCH1 was analysed using several databases, including EMBL-EBI (http://www.ebi.ac.uk/QuickGO/), AmiGO 2 (http://amigo.geneontology.org/amigo/landing) and the Gene Ontology Consortium (http://geneontology.org/).

Pathway network analysis of PTCH1 and related genes

Pathway network analysis was performed using the databases VaProS (http://pford.info/vapros/), KEGG (http://www.genome.jp/kegg/), cBioPortal for Cancer Genomics (http://www.cbioportal.org), and Cytoscape (http://www.cytoscape.org/). Molecular interactions were analysed using the BioGRID (http://www.thebiogrid.org) database [16]. Molecule localization was analyzed using The Human Protein Atlas (http://www.proteinatlas.org/) [17] and UniProt (http://www.uniprot.org/) [18]. The NextBio (http://www.nextbio.com/b/nextbio.nb) was used for the exploration of the gene expression in gastric cancer [19].

Network generation

The list of PTCH1 and EMT-related genes was uploaded in the Ingenuity Pathway Analysis (IPA, https://analysis.ingenuity.com/pa/launch.jsp). Each identifier was mapped to its corresponding object in Ingenuity's Knowledge Base [20].

Statistical analysis

The data were expressed as the mean \pm SE. Student's t-test was performed in Microsoft Excel (Microsoft, Redmond, WA, USA). p < 0.001 (n = 12 in MSCs, n = 5 in diffuse-type GC) was considered as statistically significant.

Results

Gene expression of PTCH1 and EMT-related genes in MSCs and diffuse-type GC

The gene expression of PTCH1 was up-regulated in diffuse-type GC compared to MSCs as shown in figure 1. The gene expression of PTCH1 was stably low after each passage of MSCs, whereas the gene expression of PTCH1 in diffuse-type GC was up-regulated. Notably, in one of the diffuse-type GC samples, PTCH1 gene expression was not altered. Gene expression of vimentin (VIM), an EMT-related gene, was up-regulated in one probe set and down-regulated in another probe set in diffuse-type GC compared to MSCs [11]. On the other hand, gene expression of twist family bHLH transcription factor 1 (TWIST1) and snail family transcriptional repressor 2 (SNAI2) were down-regulated in diffuse-type GC compared to MSCs [9,21]. Other EMT-related genes, TWIST2, SNAI1 or actin, alpha 1, skeletal muscle (ACTA1) had low signal intensity. Gene expression of GLI family zinc finger 3 (GLI3) was not changed between MSCs and diffuse-type GC. From the immunohistochemistry data in the Human Protein Atlas, E-cadherin (CDH1), of which gene expression was down-regulated in MSCs compared to diffuse-type GC, was less expressed in progressed cancer [11].

Gene ontology of PTCH1

According to KEGG, the gene ontology of PTCH1 is as follows: cAMP signalling pathway, Hedgehog signalling pathway, axon guidance, pathways in cancer, proteoglycans in cancer, and basal cell carcinoma. Genes in which the GO terms include regulation of EMT (GO:0010717) have been analysed with AmiGO 2 and are shown in table 1 (http://amigo.geneontology.org/amigo/term/GO:0010717).

Pathway network analysis of PTCH1 and EMT-related genes

According to the analysis of cBioPortal for Cancer Genomics, PTCH1 interacts with GLI3 in the network generated using stomach adenocarcinoma samples (TCGA, Nature 2014) (Figure 2) [15]. Next, the network was generated with PTCH1 and EMT-related genes. Information and the gene expression of 89 input genes, including PTCH1, from cBioPortal for Cancer Genomics are listed in table 2. The network contained 139 nodes and included the 89 query genes, and the most frequently altered neighbour genes (out of a total of 3060) in cBioPortal. The network includes 66 core genes originally queried and neighbouring genes. From the analysis of molecular interactions in VaProS, PTCH1 was found to be associated with the TGFB2 network. PTCH1 is also associated with TGFBR3 and TGFB2 in the VaProS molecular network.

Among the genes in the network generated with cBioPortal, the queried core genes that are connected with other core genes were

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 2-15

 Table 1. Molecules related to the regulation of EMT (AmiGO2, Homo sapiens)

Gene Symbol	Gene/ product name	Contributor	Reference
ACVR1	Activin receptor type-1	BHF-UCL	GO_REF:0000024
DIPOR1	Adiponectin receptor protein 1	BHF-UCL	PMID:23776679
.GER	Advanced glycosylation end product-specific receptor	Ensembl	GO_REF:0000019
LX1	ALX homeobox protein 1	UniProt	PMID:23288509
XIN2	Axin-2	BHF-UCL	PMID:17072303
AMBI	BMP and activin membrane-bound inhibitor homolog	BHF-UCL	PMID:19328798
CL9L	B-cell CLL/lymphoma 9-like protein	BHF-UCL	PMID:19328798
MP2	Bone morphogenetic protein 2	BHF-UCL	PMID:20890042
MP5	Bone morphogenetic protein 5	BHF-UCL	PMID:21319131
LASP1	CLIP-associating protein 1	UniProt	PMID:23940118
LASP2	CLIP-associating protein 2	UniProt	PMID:23940118
OL1A1	Collagen type I alpha-1 chain	UniProt	PMID:20018240
RB2	Protein crumbs homolog 2	UniProt	GO REF:0000024
TNNB1	Catenin beta-1	MGI	PMID:23983127
AB2	Disabled homolog 2	UniProt	PMID:15734730
AB2IP	Disabled homolog 2-interacting protein	BHF-UCL	PMID:20080667
ACT3	Dapper homolog 3	Ensembl	GO REF:0000019
AG1	Dystroglycan	UniProt	PMID:23940118
FNA1	Ephrin-A1	BHF-UCL	GO REF:0000024
LL3	-	UniProt	GO_REF:0000024 GO_REF:0000024
	RNA polymerase II elongation factor ELL3 Endoglin		-
NG		BHF-UCL	GO_REF:0000024
PB41L5	Band 4.1-like protein 5	Ensembl	GO_REF:0000019
PHA3	Ephrin type-A receptor 3	UniProt	GO_REF:0000024
ZH2	Histone-lysine N-methyltransferase EZH2	UniProt	PMID:20154697
AM195B	Mapk-regulated corepressor-interacting protein 1	UniProt	PMID:25728771
OXA1	Hepatocyte nuclear factor 3-alpha	BHF-UCL	PMID:20160041
OXA2	Hepatocyte nuclear factor 3-beta	BHF-UCL	PMID:20160041
UZ	Protein fuzzy homolog	UniProt	GO_REF:0000024
CNT2	N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase	UniProt	PMID:21750175
LIPR2	Golgi-associated plant pathogenesis-related protein 1	UniProt	PMID:23516513
REM1	Gremlin-1	UniProt	PMID:16816361
IDAC2	Histone deacetylase 2	Ensembl	GO_REF:0000019
IPN	Serine protease hepsin	UniProt	PMID:19843851
DLRAD4	Low-density lipoprotein receptor class A domain-containing protein 4	UniProt	PMID:24627487
EF1	Lymphoid enhancer-binding factor 1	UniProt	PMID:20018240
//AD2L2	Mitotic spindle assembly checkpoint protein MAD2B	BHF-UCL	PMID:19443654
VKX2-1	Homeobox protein Nkx-2.1	UniProt	PMID:19293183
ЮТСН1	Neurogenic locus notch homolog protein 1	BHF-UCL	PMID:17984306
DLFM1	Noelin	AgBase	GO REF:0000024
VOL2	Transcription factor Ovo-like 2	UniProt	GO REF:0000024
BLD	Phenazine biosynthesis-like domain-containing protein	UniProt	PMID:23687415
HLDB1	Pleckstrin homology-like domain family B member 1	UniProt	PMID:23940118
HLDB2	Pleckstrin homology-like domain family B member 2	UniProt	PMID:23940118
OFUT2	GDP-fucose protein O-fucosyltransferase 2	Ensembl	GO REF:0000019
PP2CA	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform	BHF-UCL	PMID:20080667
.GCC	Regulator of cell cycle RGCC	BHF-UCL	PMID:19158077
DCBP	Syntenin-1	UniProt	PMID:25893292
DHAF2	Succinate dehydrogenase assembly factor 2, mitochondrial	MGI	PMID:23983127
ERPINB3		UniProt	PMID:20527027
FRP1	Serpin B3 Secreted frizzled-related protein 1	UniProt	
	•		PMID:19095296
FRP2	Secreted frizzled-related protein 2	UniProt	PMID:19095296
MAD2	Mothers against decapentaplegic homolog 2	BHF-UCL	GO_REF:0000024
MAD3	Mothers against decapentaplegic homolog 3	BHF-UCL	PMID:18505915
MAD4	Mothers against decapentaplegic homolog 4	BHF-UCL	GO_REF:0000024
MAD7	Mothers against decapentaplegic homolog 7	BHF-UCL	PMID:18762808
NAI1	Zinc finger protein SNA11	BHF-UCL	PMID:17072303
TRAP	Serine-threonine kinase receptor-associated protein	UniProt	PMID:23687415
BX5	T-box transcription factor TBX5	DFLAT	PMID:20299672
CF7L2	Transcription factor 7-like 2	BHF-UCL	PMID:17072303
GFB1	Transforming growth factor beta-1	BHF-UCL	PMID:21319131

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 3-15

TGFB1I1	Transforming growth factor beta-1-induced transcript 1 protein	BHF-UCL	PMID:18762808
TGFB2	Transforming growth factor beta-2	BHF-UCL	PMID:17999987
TGFB3	Transforming growth factor beta-3	BHF-UCL	GO_REF:0000024
TGFBR1	Receptor protein serine/threonine kinase	AgBase	GO_REF:0000024
TGFBR2	TGF-beta receptor type-2	BHF-UCL	PMID:26459119
TRIM62 E3 ubiquitin-protein ligase TRIM62		Ensembl	GO_REF:0000019
TWIST1	Twist-related protein 1	BHF-UCL	PMID:18297062
URS0000170CF4_9606	Homo sapiens (human) hsa-miR-221-3p.	BHF-UCL	PMID:21673316
URS000039ED8D_9606	Homo sapiens (human) hsa-miR-21-5p.	BHF-UCL	PMID:24887517
VASN	Vasorin	UniProt	PMID:21170088
WWTR1	WW domain-containing transcription regulator protein 1	UniProt	PMID:18227151
ZNF703	Zinc finger protein 703	UniProt	GO REF:0000024

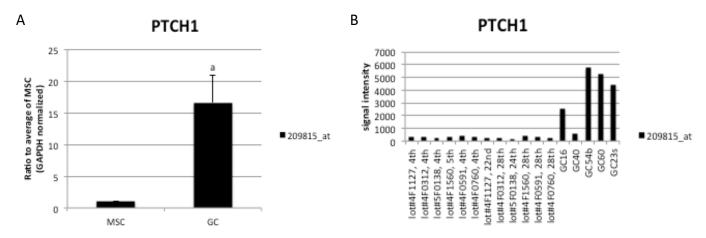


Figure 1. Gene expression of PTCH1 in MSCs and diffuse-type GC

A: Gene expression of PTCH1 was up-regulated in diffuse-type GC compared to MSCs (*p < 0.001 in Student's t-test, n = 12 in MSCs, n = 5 in diffuse-type GC). The ratio to the average of microarray signal intensity in MSCs was calculated. B: Signal intensity in each sample of MSCs and diffuse-type GC are shown.

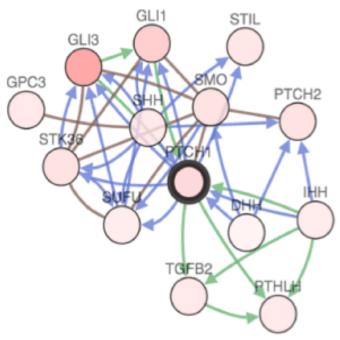


Figure 2. PTCH1 network in stomach adenocarcinoma (cBioPortal for Cancer Genomics) A PTCH1 model network was generated for stomach adenocarcinoma with cBioPortal for Cancer Genomics with query of PTCH1.

extracted to generate the model network for PTCH1 and EMT-related genes, as shown in figure 3. In figure 3, the up-regulated (UR) genes in diffuse-type GC compared to MSCs are shown in red, whereas down-regulated (DR) genes are shown in light purple (Fold change (FC) >3, p < 0.01). The genes in which FC of gene expression is between 2 and 3 and p value is less than 0.01 are highlighted with beige. UR genes in gastric cancer in the NextBio database are shown in an orange gradient, whereas DR genes are shown in green gradient. The genes in which expression was not altered in diffuse-type GC and MSCs are shown in light blue. A total of 60 genes were used to generate the PTCH1 model network.

In the model network generated from the pathway analysis shown in figure 3, notch 1 (NOTCH1), CTNNB1, stratifin (SFN), AKT serine/threonine kinase 2 (AKT2), secreted frizzled related protein 2 (SFRP2), and claudin 1 (CLDN1) were UR in diffuse-type GC compared to MSCs. F11 receptor (F11R) and the Jun proto-oncogene AP-1 transcription factor subunit (JUN) were up-regulated in diffuse-type GC compared to MSCs, although these genes are shown as DR in gastric cancer based on the NextBio database. The gene expression of integrin subunit alpha 5 (ITGA5) was DR in diffuse-type GC compared to MSCs, although it is shown to be UR in gastric cancer based on NextBio database. We have previously shown that the gene expression of cadherin 1 (CDH1) was UR, and CDH2 and fibronectin 1 (FN1) were DR in diffuse-type GC compared to MSCs [11]. Gene expression of Janus kinase 1 (JAK1), a signal transducer and activator of transcription 1 (STAT1) and STAT2 in the JAK-STAT pathway, was not altered in diffuse-type GC and

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 4-15

Table 2. Genes queried for network analysis of cBioPortal for Cancer Genomics and IPA

Gene symbol	Full name		
AKT1	v-akt murine thymoma viral oncogene homolog 1		
AKT2	v-akt murine thymoma viral oncogene homolog 2		
AKT3	v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)		
ALCAM	activated leukocyte cell adhesion molecule		
AXIN2			
	axin 2		
BAMBI	BMP and activin membrane bound inhibitor		
BMI1 BMP2	BMI1 proto-oncogene, polycomb ring finger		
	bone morphogenetic protein 2 cadherin 1		
CDH1	cadherin 2		
CL DN1			
CLDN1	claudin 1		
COL1A1	collagen, type I, alpha 1		
CYADD	catenin (cadherin-associated protein), beta 1, 88kDa		
CXADR	coxsackie virus and adenovirus receptor		
DAB2	Dab, mitogen-responsive phosphoprotein, homolog 2 (Drosophila)		
EFNA1	ephrin-A1		
ELL3	elongation factor RNA polymerase II-like 3		
EPB41L5	erythrocyte membrane protein band 4.1 like 5		
EPCAM	epithelial cell adhesion molecule		
EPHA3	EPH receptor A3		
EZH2	enhancer of zeste homolog 2 (Drosophila)		
F11R	F11 receptor		
FAM101B	family with sequence similarity 101, member B		
FLNA	filamin A, alpha		
FN1	fibronectin 1		
FOXF2	forkhead box F2		
GJB2	gap junction protein, beta 2, 26kDa		
GREM1	gremlin 1, DAN family BMP antagonist		
GSK3B	glycogen synthase kinase 3 beta		
HEY1	hairy/enhancer-of-split related with YRPW motif 1		
HEYL	hairy/enhancer-of-split related with YRPW motif-like		
HGF	hepatocyte growth factor (hepapoietin A; scatter factor)		
HIF1A	hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)		
HMGA2	high mobility group AT-hook 2		
HNRNPAB	heterogeneous nuclear ribonucleoprotein A/B		
ICAM3	intercellular adhesion molecule 3		
ITGA5	integrin, alpha 5 (fibronectin receptor, alpha polypeptide)		
JAK1	Janus kinase 1		
JUN	jun proto-oncogene		
KRT8	keratin 8		
LEF1	lymphoid enhancer-binding factor 1		
LOXL2	lysyl oxidase-like 2		
LOXL3	lysyl oxidase-like 3		
MAD2L2	MAD2 mitotic arrest deficient-like 2 (yeast)		
NANOG	Nanog homeobox		
NCAM1	neural cell adhesion molecule 1		
NFATC1	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1		
NOTCH1	notch 1		
OCLN	occludin		
PDCD1	programmed cell death 1		
PECAM1	platelet/endothelial cell adhesion molecule 1		
PINK1	PTEN induced putative kinase 1		
POFUT2	protein O-fucosyltransferase 2		
PPP2CA	protein phosphatase 2, catalytic subunit, alpha isozyme		
PRRX1	paired related homeobox 1		
PTCH1	patched 1		
RBPJ	recombination signal binding protein for immunoglobulin kappa J region		

RGCC	regulator of cell cycle
RTN4	reticulon 4
S100A4	S100 calcium binding protein A4
SFN	stratifin
SFRP1	secreted frizzled-related protein 1
SFRP2	secreted frizzled-related protein 2
SMAD2	SMAD family member 2
SMAD3	SMAD family member 3
SMAD4	SMAD family member 4
SMAD7	SMAD family member 7
SNAI2	snail family zinc finger 2
SOX2	SRY (sex determining region Y)-box 2
SOX9	SRY (sex determining region Y)-box 9
SP1	Sp1 transcription factor
STAT1	signal transducer and activator of transcription 1, 91kDa
STAT2	signal transducer and activator of transcription 2, 113kDa
TCF7L2	transcription factor 7-like 2 (T-cell specific, HMG-box)
TGFB1	transforming growth factor, beta 1
TGFB1I1	transforming growth factor beta 1 induced transcript 1
TGFB2	transforming growth factor, beta 2
TGFB3	transforming growth factor, beta 3
TGFBR1	transforming growth factor, beta receptor 1
TGFBR3	transforming growth factor, beta receptor 3
TJP1	tight junction protein 1
TRIM28	tripartite motif containing 28
TWIST1	twist basic helix-loop-helix transcription factor 1
VIM	vimentin
WNT5A	wingless-type MMTV integration site family, member 5A
WWTR1	WW domain containing transcription regulator 1
ZEB1	zinc finger E-box binding homeobox 1
ZEB2	zinc finger E-box binding homeobox 2
ZNF703	zinc finger protein 703

MSCs. BMI1 proto-oncogene, polycomb ring finger (BMI1), CDH2, high mobility group AT-hook 2 (HMGA2), neural cell adhesion molecule 1 (NCAM1) and VIM were included in network generated with cBioPortal for Cancer Genomics, which resulted in generation of PTCH1 model network without these genes due to the linkage was through neighbor genes not with query genes.

Network generated with EMT-related genes in Ingenuity Pathway Analysis (IPA)

The 89 genes including PTCH1 and EMT-related genes were used for generating networks in IPA (Table 2). The networks generate with IPA included 11 networks related to cellular movement or cellular development. The most significant network is shown in figure 4. The molecules in the network includes activated leukocyte cell adhesion molecule (ALCAM), BMP and activin membrane bound inhibitor (BAMBI), CDH2, collagen type I alpha 1 chain (COL1A1), ephrin A1 (EFNA1), HMGA2, ITGA5, mitotic arrest deficient 2 like 2 (MAD2L2), platelet and endothelial cell adhesion molecule 1 (PECAM1), SFRP2, SMAD family member 4 (SMAD4), SMAD7, SNAI2, transforming growth factor beta receptor 1 (TGFBR1), TGFBR3, TWIST1, WW domain containing transcription regulator 1 (WWTR1). The function of the network was associated with cardiovascular system development and function, and cellular movement.

PTCH1 interactors identified by BioGRID

Table 3 shows the gene ontology of 88 interactors with PTCH1 analysed with the BioGRID database [16]. PTCH1 had 94 total unique

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 5-15

Table 3. Gene Ontology (GO) analysis of 88 interactors of PTCH1 (BioGRID)

Gene Symbol	Gene Title	GO biological process term
ABCA2	ATP-binding cassette, sub-family A (ABC1), member 2	ATP catabolic process / regulation of transcription from RNA polymerase II promoter / lipid metabolic process / transport / metabolic process / regulation of intracellular cholesterol transport / response to drug / cholesterol homeostasis / response to steroid hormone / transmembrane transport
ADAM17	ADAM metallopeptidase domain 17	response to hypoxia / positive regulation of protein phosphorylation / neutrophil mediated immunity / germinal center formation / positive regulation of leukocyte chemotaxis / proteolysis / membrane protein ectodomain proteolysis / apoptotic process / cell adhesion / epidermal growth factor receptor signaling pathway / Notch signaling pathway / Notch receptor processing / positive regulation of cell proliferation / positive regulation of T cell chemotaxis / extracellular matrix disassembly / B cell differentiation / extracellular matrix organization / positive regulation of cell growth / positive regulation of cell migration / positive regulation of transforming growth factor beta receptor signaling pathway / negative regulation of transforming growth factor beta receptor signaling pathway / collagen catabolic process / membrane protein intracellular domain proteolysis / positive regulation of cyclin-dependent protein serine/threonine kinase activity involved in G ₁ /S transition of mitotic cell cycle / response to lipopolysaccharide / negative regulation of interleukin-8 production / positive regulation of chemokine production / regulation of mast cell apoptotic process / T cell differentiation in thymus / cell adhesion mediated by integrin / wound healing, spreading of epidermal cells / epidermal growth factor-activated receptor transactivation by G-protein coupled receptor signaling pathway / response to drug / positive regulation of epidermal growth factor-activated receptor activity / neurotrophin TRK receptor signaling pathway / spleen development / cell motility / PMA-inducible membrane protein ectodomain proteolysis / positive regulation of cellular component movement / response to high density lipoprotein particle / JAK-STAT cascade involved in growth hormone signaling pathway / apoptotic signaling pathway
ARSK	arylsulfatase family, member K	sphingolipid metabolic process / glycosphingolipid metabolic process / metabolic process / post-translational protein modification / cellular protein metabolic process / small molecule metabolic process
ASPH	aspartate beta-hydroxylase	detection of calcium ion / muscle contraction / pattern specification process / negative regulation of cell proliferation / positive regulation of calcium ion transport into cytosol / regulation of cell communication by electrical coupling / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / peptidyl-amino acid modification / regulation of inositol 1,4,5-trisphosphate-sensitive calcium-release channel activity / regulation of protein stability / activation of store-operated calcium channel activity / response to ATP / limb morphogenesis / peptidyl-aspartic acid hydroxylation / positive regulation of proteolysis / positive regulation of transcription, DNA-templated / oxidation-reduction process / palate development / regulation of ryanodine-sensitive calcium-release channel activity / face morphogenesis / calcium ion transmembrane transport / cellular response to calcium ion / positive regulation of intracellular protein transport / activation of cysteine-type endopeptidase activity / regulation of protein depolymerization
ATF6B	activating transcription factor 6 beta	transcription, DNA-templated / regulation of transcription, DNA-templated / response to unfolded protein / signal transduction and transcription in the protein of transcription in the prot
B3GALTL	beta 1,3-galactosyltransferase-like	carbohydrate metabolic process / fucose metabolic process / protein glycosylation
B4GALT1	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 1	epithelial cell development / acute inflammatory response / carbohydrate metabolic process / lactose biosynthetic process / galactose metabolic process / protein glycosylation / protein N-linked glycosylation / cell adhesion / Notch signaling pathway / single fertilization / binding of sperm to zona pellucida / penetration of zona pellucida / negative regulation of cell proliferation / glycoprotein biosynthetic process / oligosaccharide biosynthetic process / keratan sulfate biosynthetic process / protein N-linked glycosylation via asparagine / extracellular matrix organization / glycosaminoglycan metabolic process / mammary gland development / multicellular organism reproduction / wound healing / regulation of cell proliferation / keratan sulfate metabolic process / positive regulation of apoptotic process / post-translational protein modification / cellular protein metabolic process / small molecule metabolic process / development of secondary sexual characteristics / branching morphogenesis of an epithelial tube / leukocyte migration / regulation of cellular component movement / regulation of acrosome reaction / positive regulation of epithelial cell proliferation involved in wound healing / angiogenesis involved in wound healing / positive regulation of apoptotic process involved in mammary gland involution
B4GALT3	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 3	carbohydrate metabolic process / protein glycosylation / keratan sulfate biosynthetic process / protein N-linked glycosylation via asparagine / glycosaminoglycan metabolic process / keratan sulfate metabolic process / post-translational protein modification / cellular protein metabolic process / small molecule metabolic process
B4GALT7	xylosylprotein beta 1,4-galactosyltransferase, polypeptide 7	carbohydrate metabolic process / glycosaminoglycan biosynthetic process / proteoglycan metabolic process / cellular protein modification process / protein glycosylation / protein N-linked glycosylation / glycosaminoglycan metabolic process / chondroitin sulfate metabolic process / extracellular fibril organization / small molecule metabolic process / negative regulation of fibroblast proliferation
CACNA2D1	calcium channel, voltage-dependent, alpha 2/delta subunit 1	transport / ion transport / calcium ion transport / regulation of ion transmembrane transport / regulation of calcium ion transport / calcium ion transmembrane transport
CACNA2D2	calcium channel, voltage-dependent, alpha 2/delta subunit 2	energy reserve metabolic process / transport / ion transport / calcium ion transport / neuromuscular junction development / regulation of ion transmembrane transport / regulation of multicellular organism growth / small molecule metabolic process / positive regulation of organ growth / muscle fiber development / regulation of insulin secretion / rhythmic synaptic transmission / calcium ion transmembrane transport
CASP9	caspase 9, apoptosis-related cysteine peptidase	proteolysis / apoptotic process / activation of cysteine-type endopeptidase activity involved in apoptotic process / cellular response to DNA damage stimulus / epidermal growth factor receptor signaling pathway / aging / fibroblast growth factor receptor signaling pathway / intrinsic apoptotic signaling pathway in response to DNA damage / activation of cysteine-type endopeptidase activity involved in apoptotic process by cytochrome c / response to UV / response to organic cyclic compound / platelet formation / response to cobalt ion / response to estradiol / response to lipopolysaccharide / glial cell apoptotic process / cellular response to UV / Fc-epsilon receptor signaling pathway / signal transduction in response to DNA damage / regulation of apoptotic process / positive regulation of apoptotic process / positive regulation of apoptotic process / positive regulation of neuron apoptotic process / innate immune response / response to antibiotic / neurotrophin TRK receptor signaling pathway / phosphatidylinositol-mediated signaling / cellular response to organic cyclic compound / cellular response to dexamethasone stimulus / intrinsic apoptotic signaling pathway / regulation of response to DNA damage stimulus

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 6-15

CAVI	caveolin 1, caveolae protein, 22kDa	negative regulation of transcription from RNA polymerase II promoter / MAPK cascade / inactivation of MAPK activity / angiogenesis / vasculogenesis / response to hypoxia / negative regulation of endothelial cell proliferation / negative regulation of cytokine-mediated signaling pathway / regulation of the force of heart contraction / response to ischemia / regulation of the force of heart contraction by chemical signal / triglyceride metabolic process / calcium ion transport / cellular calcium ion homeostasis / regulation of smooth muscle contraction / skeletal muscle tissue development / lactation / blood coagulation / protein localization / negative regulation of cell proliferation / cellular response to starvation / negative regulation of signal transduction / positive regulation of calcium ion transport into cytosol / positive regulation of peptidase activity / viral process / vesicle organization / modulation by virus of host morphology or physiology / regulation of fatty acid metabolic process / lipid storage / regulation of blood coagulation / cholesterol transport / negative regulation of BMP signaling pathway / negative regulation of epithelial cell differentiation / mammary gland development / T cell costimulation / negative regulation of protein ubiquitination / negative regulation of protein binding / maintenance of protein location in cell / response to progesterone / negative regulation of peptidyl-serine phosphorylation / positive regulation of peptidyl-serine phosphorylation / positive regulation of Stat5 protein / cholesterol homeostasis / negative regulation of MAPk kinase activity / negative regulation of MAPK cascade / response to estrogen / small molecule metabolic process / negative regulation of intric oxide biosynthetic process / positive regulation of vasoconstriction / nitric oxide metabolic process / negative regulation of noritric oxide biosynthetic process / positive regulation of protein homooligomerization / cytosolic calcium ion homeostasis / response to calcium ion / membrane de
CCPG1	cell cycle progression 1	cell cycle / positive regulation of cell proliferation / positive regulation of cell cycle / positive regulation of transcription from RNA polymerase II promoter / regulation of Rho guanyl-nucleotide exchange factor activity
CHPF	chondroitin polymerizing factor	carbohydrate metabolic process / metabolic process / glycosaminoglycan metabolic process / chondroitin sulfate metabolic process / chondroitin sulfate biosynthetic process / small molecule metabolic process
CHST12	carbohydrate (chondroitin 4) sulfotransferase 12	carbohydrate metabolic process / carbohydrate biosynthetic process / glycosaminoglycan metabolic process / chondroitin sulfate metabolic process / chondroitin sulfate biosynthetic process / dermatan sulfate biosynthetic process / small molecule metabolic process
CHST14	carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 14	carbohydrate metabolic process / carbohydrate biosynthetic process / glycosaminoglycan metabolic process / chondroitin sulfate metabolic process / dermatan sulfate biosynthetic process / small molecule metabolic process / dermatan sulfate proteoglycan metabolic process
CHSY1	chondroitin sulfate synthase 1	carbohydrate metabolic process / metabolic process / glycosaminoglycan metabolic process / chondroitin sulfate metabolic process / chondroitin sulfate biosynthetic process / negative regulation of ossification / response to nutrient levels / small molecule metabolic process
CNNM1	cyclin M1	transport / ion transport
CNNM4	cyclin M4	transport / ion transport / visual perception / biomineral tissue development / response to stimulus
CNTNAP3	contactin associated protein-like 3	cell adhesion / cell recognition
COCH	cochlin	sensory perception of sound / regulation of cell shape
COL18A1	collagen, type XVIII, alpha 1	angiogenesis / endothelial cell morphogenesis / cell adhesion / visual perception / positive regulation of cell proliferation / negative regulation of cell proliferation / organ morphogenesis / extracellular matrix disassembly / extracellular matrix organization / positive regulation of cell migration / collagen catabolic process / response to drug / positive regulation of apoptotic process / response to hydrostatic pressure / positive regulation of endothelial cell apoptotic process
DDX19B	DEAD (Asp-Glu-Ala-Asp) box polypeptide 19B	mRNA export from nucleus / transport / metabolic process / protein transport / mRNA transport
DHFRL1	dihydrofolate reductase-like 1	glycine biosynthetic process / one-carbon metabolic process / nucleotide biosynthetic process / thymidine biosynthetic process / tetrahydrofolate metabolic process / tetrahydrofolate biosynthetic process / oxidation-reduction process
EGFR	epidermal growth factor receptor	MAPK cascade / activation of MAPKK activity / cell morphogenesis / ossification / liver development / embryonic placenta development / positive regulation of protein phosphorylation / hair follicle development / polysaccharide metabolic process translation / protein phosphorylation / response to stress / response to osmotic stress / response to oxidative stress / signal transduction / cell surface receptor signaling pathway / transmembrane receptor protein tyrosine kinase signaling pathway / epidermal growth factor receptor signaling pathway / activation of phospholipase C activity / multicellular organismal development / axon guidance / salivary gland morphogenesis / learning or memory / circadian rhythm / cell proliferation / positive regulation of cell proliferation / fibroblast growth factor receptor signaling pathway / epidermis development / magnesium ion homeostasis / response to organic cyclic compound / diterpenoid metabolic process / phosphorylation / single organismal cell-cell adhesion / peptidyl-tyrosine phosphorylation / alkanesulfonate metabolic process / cerebral cortex cell migration / signal transduction by phosphorylation / lung development / positive regulation of cell migration / positive regulation of superoxide anion generation / response to cobalamin / response to hydroxyisoflavone / response to lipid / positive regulation of superoxide anion generation / response to cobalamin / response to hydroxyisoflavone / response to lipid / positive regulation of epidermal growth factor receptor signaling pathway / regulation of cell proliferation / negative regulation of protein catabolic process / positive regulation of phosphorylation / ovulation cycle / hydrogen peroxide metabolic process / activation of phospholipase A2 activity by calcium-mediated signaling / negative regulation of apoptotic process / positive regulation of DNA repair / positive regulation of positive regulation of transcription from RNA polymerase II promoter / protein autophosphorylation / neurotrophin TRK receptor signalin

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 7-15

ENDOG	endonuclease G	in utero embryonic development / apoptotic DNA fragmentation / DNA recombination / response to tumor necrosis factor / positive regulation of apoptotic process / response to antibiotic
ENPP1	ectonucleotide pyrophosphatase/ phosphodiesterase 1	generation of precursor metabolites and energy / ATP catabolic process / vitamin metabolic process / water-soluble vitamin metabolic process / riboflavin metabolic process / phosphate-containing compound metabolic process / receptor-mediated endocytosis / immune response / metabolic process / nucleoside triphosphate catabolic process / negative regulation of ossification / negative regulation of cell growth / regulation of bone mineralization / inorganic diphosphate transport / cellular phosphate ion homeostasis / sequestering of triglyceride / biomineral tissue development / negative regulation of protein autophosphorylation / cellular response to insulin stimulus / small molecule metabolic process / negative regulation of glucose import / negative regulation of insulin receptor signaling pathway / bone remodeling / 3'-phosphoadenosine 5'-phosphosulfate metabolic process / nucleic acid phosphodiester bond hydrolysis
EXT1	exostosin glycosyltransferase 1	skeletal system development / ossification / carbohydrate metabolic process / glycosaminoglycan biosynthetic process / protein glycosylation / signal transduction / gastrulation / axon guidance / brain development / endoderm development / mesoderm development / heparan sulfate proteoglycan biosynthetic process / polysaccharide chain biosynthetic process / olfactory bulb development / glycosaminoglycan metabolic process / cellular polysaccharide biosynthetic process / small molecule metabolic process / embryonic skeletal joint development
FHL2	four and a half LIM domains 2	negative regulation of transcription from RNA polymerase II promoter / osteoblast differentiation / transcription, DNA-templated / regulation of transcription, DNA-templated / regulation of transcription from RNA polymerase II promoter / response to hormone / androgen receptor signaling pathway / negative regulation of apoptotic process / cellular lipid metabolic process / small molecule metabolic process / negative regulation of transcription, DNA-templated / positive regulation of transcription, DNA-templated / atrial cardiac muscle cell development / ventricular cardiac muscle cell development / heart trabecula formation
FUT11	fucosyltransferase 11 (alpha (1,3) fucosyltransferase)	protein glycosylation / fucosylation
GALNT7	polypeptide N-acetylgalactosaminyltransferase 7	carbohydrate metabolic process / protein glycosylation / protein O-linked glycosylation / metabolic process / O-glycan processing / post-translational protein modification / cellular protein metabolic process
GCNT1	glucosaminyl (N-acetyl) transferase 1, core 2	protein glycosylation / metabolic process / glycoprotein biosynthetic process / O-glycan processing / response to insulin / post-translational protein modification / cellular protein metabolic process / tissue morphogenesis / leukocyte tethering or rolling / cell adhesion molecule production / kidney morphogenesis
HLA-A	major histocompatibility complex, class I, A	positive regulation of T cell mediated cytotoxicity / immune system process / antigen processing and presentation of peptide antigen via MHC class I / antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent / antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent / antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independent / immune response / viral process / detection of bacterium / cytokine-mediated signaling pathway / antigen processing and presentation / positive regulation of interferon-gamma production / protection from natural killer cell mediated cytotoxicity / antigen processing and presentation of exogenous peptide antigen via MHC class I / regulation of defense response to virus by virus / regulation of immune response / interferon-gamma-mediated signaling pathway / type I interferon signaling pathway / positive regulation of memory T cell activation
HLA-C	major histocompatibility complex, class I, C	cilium or flagellum-dependent cell motility / positive regulation of T cell mediated cytotoxicity / immune system process / antigen processing and presentation of peptide antigen via MHC class I / antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent / antigen processing and presentation of exogenous peptide antigen via MHC class I via ER pathway, TAP-independent / immune response / microtubule-based movement / signal transduction / metabolic process / viral process / modulation by virus of host morphology or physiology / cytokine-mediated signaling pathway / antigen processing and presentation of exogenous peptide antigen via MHC class I / innate immune response / regulation of immune response / interferon-gamma-mediated signaling pathway / type I interferon signaling pathway
HS6ST2	heparan sulfate 6-O-sulfotransferase 2	carbohydrate metabolic process / glycosaminoglycan biosynthetic process / metabolic process / glycosaminoglycan metabolic process / small molecule metabolic process
HSPA5	heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)	cell morphogenesis / platelet degranulation / ATP catabolic process / ER overload response / activation of signaling protein activity involved in unfolded protein response / blood coagulation / cerebellum structural organization / cerebellar Purkinje cell layer development / substantia nigra development / platelet activation / positive regulation of cell migration / ER-associated ubiquitin-dependent protein catabolic process / negative regulation of transforming growth factor beta receptor signaling pathway / endoplasmic reticulum unfolded protein response / positive regulation of protein ubiquitination / maintenance of protein localization in endoplasmic reticulum / cellular response to glucose starvation / negative regulation of apoptotic process / cellular protein metabolic process / proteolysis involved in cellular protein catabolic process / regulation of protein folding in endoplasmic reticulum / cellular response to antibiotic / cellular response to interleukin-4
IMPAD1	inositol monophosphatase domain containing 1	skeletal system development / endochondral ossification / chondrocyte development / inositol biosynthetic process / post- embryonic development / dephosphorylation / chondroitin sulfate metabolic process / embryonic digit morphogenesis / phosphatidylinositol phosphorylation
ІТСН	itchy E3 ubiquitin protein ligase	protein polyubiquitination / regulation of cell growth / immune system process / positive regulation of T cell anergy / ubiquitin-dependent protein catabolic process / apoptotic process / inflammatory response / Notch signaling pathway / metabolic process / viral process / protein ubiquitination / modulation by virus of host morphology or physiology / negative regulation of NF-kappaB transcription factor activity / negative regulation of type I interferon production / protein K29-linked ubiquitination / nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway / protein ubiquitination involved in ubiquitin-dependent protein catabolic process / negative regulation of apoptotic process / innate immune response / positive regulation of protein catabolic process / negative regulation of JNK cascade / negative regulation of alpha-beta T cell proliferation / viral entry into host cell / negative regulation of defense response to virus / defense response to virus / nucleotide-binding oligomerization domain containing signaling pathway / protein K63-linked ubiquitination / protein K48-linked ubiquitination / regulation of protein deubiquitination
ITGA4	integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)	blood vessel remodeling / cell adhesion / heterophilic cell-cell adhesion / leukocyte cell-cell adhesion / integrin-mediated signaling pathway / heart development / blood coagulation / cell migration / B cell differentiation / extracellular matrix organization / regulation of immune response / leukocyte migration / face development / chorio-allantoic fusion / negative regulation of protein homodimerization activity

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 8-15

ITGA6	integrin, alpha 6	cell-substrate junction assembly / cell adhesion / cell-matrix adhesion / integrin-mediated signaling pathway / blood coagulation / positive regulation of cell-substrate adhesion / single organismal cell-cell adhesion / positive regulation of cell-cell adhesion / extracellular matrix organization / hemidesmosome assembly / cell-substrate adhesion / cellular response to extracellular stimulus / cell adhesion mediated by integrin / cell junction assembly / positive regulation of phosphorylation / odontogenesis of dentin-containing tooth / positive regulation of apoptotic process / positive regulation of transcription from RNA polymerase II promoter / filopodium assembly / brown fat cell differentiation / leukocyte migration / cellular response to organic cyclic compound / negative regulation of extrinsic apoptotic signaling pathway
ITGA7	integrin, alpha 7	cell adhesion / cell-matrix adhesion / integrin-mediated signaling pathway / muscle organ development / skeletal muscle tissue development / regulation of cell shape / cell migration / extracellular matrix organization / blood vessel morphogenesis
ITGA8	integrin, alpha 8	metanephros development / cell adhesion / cell-matrix adhesion / integrin-mediated signaling pathway / multicellular organismal development / nervous system development / brain development / memory / single organismal cell-cell adhesion / cell projection organization / cell differentiation / extracellular matrix organization / positive regulation of transforming growth factor beta receptor signaling pathway / inner ear morphogenesis / establishment of protein localization / smooth muscle tissue development / positive regulation of transcription from RNA polymerase II promoter involved in smooth muscle cell differentiation
KIAA1161	KIAA1161	carbohydrate metabolic process / metabolic process / positive regulation of insulin-like growth factor receptor signaling pathway / skeletal muscle fiber development / positive regulation of protein kinase B signaling
LRFN3	leucine rich repeat and fibronectin type III domain containing 3	cell adhesion
MAN2A1	mannosidase, alpha, class 2A, member 1	in utero embryonic development / liver development / carbohydrate metabolic process / mannose metabolic process / protein glycosylation / N-glycan processing / mitochondrion organization / vacuole organization / respiratory gaseous exchange / metabolic process / protein N-linked glycosylation via asparagine / post-translational protein modification / cellular protein metabolic process / lung alveolus development / positive regulation of neurogenesis / retina morphogenesis in camera-type eye
MGAT1	mannosyl (alpha-1,3-)- glycoprotein beta-1,2-N- acetylglucosaminyltransferase	in utero embryonic development / carbohydrate metabolic process / UDP-N-acetylglucosamine catabolic process / protein glycosylation / protein N-linked glycosylation via asparagine / post-translational protein modification / cellular protein metabolic process
MGAT5	mannosyl (alpha-1,6-)- glycoprotein beta-1,6-N-acetyl- glucosaminyltransferase	protein glycosylation / protein N-linked glycosylation / protein N-linked glycosylation via asparagine / post-translational protein modification / cellular protein metabolic process
MOXD1	monooxygenase, DBH-like 1	catecholamine metabolic process / oxidation-reduction process
MUCL1	mucin-like 1	O-glycan processing / post-translational protein modification / cellular protein metabolic process
NDST2	N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2	carbohydrate metabolic process / glycosaminoglycan biosynthetic process / metabolic process / heparan sulfate proteoglycan biosynthetic process / glycosaminoglycan metabolic process / heparin biosynthetic process / small molecule metabolic process
NEDD4L	neural precursor cell expressed, developmentally down-regulated 4-like, E3 ubiquitin protein ligase	negative regulation of transcription from RNA polymerase II promoter / negative regulation of systemic arterial blood pressure / regulation of membrane depolarization / transcription, DNA-templated / transcription initiation from RNA polymerase II promoter / protein monoubiquitination / sodium ion transport / cellular sodium ion homeostasis / transforming growth factor beta receptor signaling pathway / excretion / metabolic process / response to salt stress / response to metal ion / gene expression / positive regulation of sodium ion transport / negative regulation of sodium ion transport / viral process / protein ubiquitination / modulation by virus of host morphology or physiology / viral life cycle / water homeostasis / negative regulation of transforming growth factor beta receptor signaling pathway / ion transmembrane transport / regulation of ion transmembrane transport / regulation of protein catabolic process / regulation of membrane potential / protein ubiquitination involved in ubiquitin-dependent protein catabolic process / proteasome-mediated ubiquitin-dependent protein catabolic process / ubiquitin-dependent protein catabolic process / proteasome-mediated ubiquitin-dependent protein catabolic process / ubiquitin-dependent protein catabolic proce
NEDD4	neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase	negative regulation of transcription from RNA polymerase II promoter / adaptive immune response / outflow tract morphogenesis / endocardial cushion development / protein monoubiquitination / protein targeting to lysosomal transport / nervous system development / neuromuscular junction development / metabolic process / negative regulation of sodium ion transport / negative regulation of transcription from RNA polymerase II promoter in response to UV-induced DNA damage / positive regulation of phosphatidylinositol 3-kinase signaling / viral process / protein ubiquitination / modulation by virus of host morphology or physiology / transmission of virus / cytokine-mediated signaling pathway / negative regulation of vascular endothelial growth factor receptor signaling pathway / neuron projection development / receptor internalization / receptor catabolic process / cellular response to UV / regulation of ion transmembrane transport / T cell activation / regulation of membrane potential / protein ubiquitin-dependent protein catabolic process / glucocorticoid receptor signaling pathway / ubiquitin-dependent protein catabolic process / positive regulation of nucleocytoplasmic transport / blood vessel morphogenesis / regulation of protein catabolic process / positive regulation of nucleocytoplasmic transport / blood vessel morphogenesis / regulation of dendrite morphogenesis / regulation of synapse organization / progesterone receptor signaling pathway / response to calcium ion / protein K63-linked ubiquitination / regulation of potassium ion transmembrane transporter activity
NETO2	neuropilin (NRP) and tolloid (TLL)-like 2	regulation of kainate selective glutamate receptor activity
PAM	peptidylglycine alpha-amidating monooxygenase	peptide amidation / response to hypoxia / long-chain fatty acid metabolic process / regulation of transcription from RNA polymerase II promoter / cellular protein modification process / peptide metabolic process / mitotic chromosome condensation / central nervous system development / heart development / lactation / metabolic process / response to pH / toxin metabolic process / protein amidation / protein metabolic process / ovulation cycle process / response to estradiol / regulation of actin cytoskeleton organization / odontogenesis / response to drug / response to copper ion / regulation of protein secretion / protein homooligomerization / response to glucocorticoid / oxidation-reduction process / maternal process involved in female pregnancy / limb development

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 9-15

PDF	peptide deformylase, mitochondrial	co-translational protein modification / translation / positive regulation of cell proliferation / peptidyl-methionine modification / N-terminal protein amino acid modification
PLXNA1	plexin A1	signal transduction / multicellular organismal development / axon guidance / regulation of smooth muscle cell migration / positive regulation of GTPase activity / regulation of small GTPase mediated signal transduction / dichotomous subdivision of terminal units involved in salivary gland branching / semaphorin-plexin signaling pathway
PLXNB2	plexin B2	neural tube closure / regulation of protein phosphorylation / signal transduction / multicellular organismal development / neuroblast proliferation / brain development / regulation of cell shape / regulation of Rho GTPase activity / positive regulation of axonogenesis / regulation of small GTPase mediated signal transduction / semaphorin-plexin signaling pathway / regulation of neuron migration
POMGNT2	protein O-linked mannose N-acetylglucosaminyltransferase 2 (beta 1,4-)	protein glycosylation / protein O-linked glycosylation
POMT2	protein-O-mannosyltransferase 2	protein glycosylation / protein O-linked glycosylation / protein O-linked mannosylation / mannosylation
PXYLP1	2-phosphoxylose phosphatase 1	metabolic process / dephosphorylation
RNF130	ring finger protein 130	apoptotic process / programmed cell death / protein ubiquitination
SEMA4F	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4F	cell-cell signaling / multicellular organismal development / nervous system development / axon guidance / cell differentiation / negative regulation of axon extension / retinal ganglion cell axon guidance
SEMA6A	sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A	neuron migration / apoptotic process / cytoskeleton organization / cell surface receptor signaling pathway / multicellular organismal development / nervous system development / axon guidance / organ morphogenesis / cell differentiation / centrosome localization / semaphorin-plexin signaling pathway / positive regulation of neuron migration
SLIT2	slit homolog 2 (Drosophila)	metanephros development / ureteric bud development / in utero embryonic development / negative regulation of protein phosphorylation / cell migration involved in sprouting angiogenesis / negative regulation of leukocyte chemotaxis / chemotaxis / multicellular organismal development / nervous system development / axonogenesis / axon guidance / motor neuron axon guidance / negative regulation of cell proliferation / negative regulation of lamellipodium assembly / negative regulation of endothelial cell migration / negative regulation of gene expression / negative regulation of smooth muscle cell migration / single organismal cell-cell adhesion / olfactory bulb development / chemorepulsion involved in embryonic olfactory bulb interneuron precursor migration / chemorepulsion involved in postnatal olfactory bulb interneuron migration / corticospinal neuron axon guidance through spinal cord / telencephalon cell migration / cell differentiation / negative regulation of cell growth / negative regulation of cell migration / negative regulation of cell migration / negative regulation of cell migration / retinal ganglion cell axon guidance / cellular response to hormone stimulus / dorsal/ventral axon guidance / Roundabout signaling pathway / positive regulation of axonogenesis / negative regulation of catalytic activity / negative regulation of vascular permeability / branching morphogenesis of an epithelial tube / neuron projection morphogenesis / axon extension involved in axon guidance / positive regulation of axonogenesis / negative chemotaxis / induction of negative chemotaxis / negative regulation of small GTPase mediated signal transduction / response to cortisol / mammary gland duct morphogenesis / mammary duct terminal end bud growth / apoptotic process involved in luteolysis / negative regulation of chemokine-mediated signaling pathway / cellular response to heparin / negative regulation of smooth muscle cell chemotaxis / negative regulation of mononuclear cell migration / negative regulation of neutrophil chemo
SMO	smoothened, frizzled class receptor	negative regulation of transcription from RNA polymerase II promoter / ossification / vasculogenesis / osteoblast differentiation / in utero embryonic development / cell fate specification / neural crest cell migration / heart looping / positive regulation of mesenchymal cell proliferation / heart morphogenesis / determination of left/right asymmetry in lateral mesoderm / type B pancreatic cell development / signal transduction / cell surface receptor signaling pathway / G-protein coupled receptor signaling pathway / smoothened signaling pathway / positive regulation of hh target transcription factor activity / multicellular organismal development / spermatogenesis / determination of left/right symmetry / ventral midline determination / pattern specification process / central nervous system development / midgut development / positive regulation of cell proliferation / gonad development / dorsal/ventral pattern formation / cardioblast differentiation / regulation of gene expression / positive regulation of gene expression / negative regulation of gene expression / floor plate formation / facial nerve development / cerebellar cortex morphogenesis / thalamus development / dorsal/ventral neural tube patterning / smoothened signaling pathway involved in ventral spinal cord patterning / smoothened signaling pathway involved in regulation of cerebellar granule cell precursor cell proliferation / exocrine pancreas development / hair follicle morphogenesis / embryonic camera-type eye development / neuron projection regeneration / otolith morphogenesis / protein localization to nucleus / multicellular organism growth / positive regulation of apoptotic process / negative regulation of DNA binding / positive regulation of smoothened signaling pathway / positive regulation of apoptotic process / negative regulation of DNA binding / positive regulation of smoothened signaling pathway / positive regulation of transcription from RNA polymerase II promoter / cell development / embryonic digestive tract morphogenesis / digestive
SMURF1	SMAD specific E3 ubiquitin protein ligase 1	protein polyubiquitination / protein export from nucleus / transforming growth factor beta receptor signaling pathway / ectoderm development / metabolic process / protein ubiquitination / cell differentiation / negative regulation of ossification / BMP signaling pathway / negative regulation of transforming growth factor beta receptor signaling pathway / negative regulation of BMP signaling pathway / ubiquitin-dependent SMAD protein catabolic process / receptor catabolic process / protein localization to cell surface / protein ubiquitination involved in ubiquitin-dependent protein catabolic process / proteasome-mediated ubiquitin-dependent protein catabolic process

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 10-15

SMURF2	SMAD specific E3 ubiquitin protein ligase 2	negative regulation of transcription from RNA polymerase II promoter / transcription, DNA-templated / transcription initiation from RNA polymerase II promoter / ubiquitin-dependent protein catabolic process / transforming growth factor beta receptor signaling pathway / metabolic process / gene expression / protein ubiquitination / regulation of transforming growth factor beta receptor signaling pathway / BMP signaling pathway / negative regulation of transforming growth factor beta receptor signaling pathway / ubiquitin-dependent SMAD protein catabolic process / protein ubiquitination involved in ubiquitin-dependent protein catabolic process / negative regulation of transcription, DNA-templated
SPPL2B	signal peptide peptidase like 2B	proteolysis / membrane protein ectodomain proteolysis / membrane protein intracellular domain proteolysis / regulation of immune response
ST3GAL4	ST3 beta-galactoside alpha-2,3-sialyltransferase 4	carbohydrate metabolic process / protein glycosylation / O-glycan processing / keratan sulfate biosynthetic process / protein N-linked glycosylation via asparagine / glycosaminoglycan metabolic process / keratan sulfate metabolic process / post-translational protein modification / cellular protein metabolic process / small molecule metabolic process / cognition / sialylation
ST3GAL6	ST3 beta-galactoside alpha-2,3-sialyltransferase 6	carbohydrate metabolic process / cellular protein modification process / protein glycosylation / glycolipid metabolic process / oligosaccharide metabolic process / keratan sulfate biosynthetic process / glycosaminoglycan metabolic process / keratan sulfate metabolic process / small molecule metabolic process / cellular response to interleukin-6 / sialylation
ST6GALNAC3	ST6 (alpha-N-acetyl-neuraminyl- 2,3-beta-galactosyl-1,3)-N- acetylgalactosaminide alpha-2,6- sialyltransferase 3	protein glycosylation / glycosylceramide metabolic process / sialylation
ST8SIA4	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4	ganglioside biosynthetic process / cellular protein modification process / protein glycosylation / N-glycan processing / nervous system development / axon guidance / oligosaccharide metabolic process / sialylation
SULF2	sulfatase 2	kidney development / chondrocyte development / glomerular filtration / metabolic process / positive regulation vascular endothelial growth factor production / esophagus smooth muscle contraction / positive regulation of Wnt signaling pathway / heparan sulfate proteoglycan metabolic process / glomerular basement membrane development / glial cell-derived neurotrophic factor receptor signaling pathway / negative regulation of fibroblast growth factor receptor signaling pathway / embryonic skeletal system development / cartilage development / bone development / innervation
TGFBR3	transforming growth factor, beta receptor III	blood vessel development / response to hypoxia / in utero embryonic development / blastocyst development / epithelial to mesenchymal transition/liver development/heart morphogenesis/protein complex assembly/immune response/transforming growth factor beta receptor signaling pathway / transforming growth factor beta receptor complex assembly/negative regulation of epithelial cell migration / negative regulation of epithelial to mesenchymal transition / cell growth / cell migration / BMP signaling pathway / positive regulation of transforming growth factor beta receptor signaling pathway / negative regulation of transforming growth factor beta receptor signaling pathway / negative regulation of transforming growth factor beta receptor signaling pathway / organ regeneration / response to follicle-stimulating hormone / response to prostaglandin E / response to luteinizing hormone / intracellular signal transduction / regulation of protein binding / negative regulation of epithelial cell proliferation / positive regulation of NF-kappaB transcription factor activity / negative regulation of cellular component movement / ventricular cardiac muscle tissue morphogenesis / palate development / cardiac muscle cell proliferation / definitive hemopoiesis / cardiac epithelial to mesenchymal transition / definitive erythrocyte differentiation / heart trabecula formation / pathway-restricted SMAD protein phosphorylation
TMEM2	transmembrane protein 2	multicellular organismal development
TMEM131	transmembrane protein 131	
TMEM132A	transmembrane protein 132A	
TMEM160	transmembrane protein 160	
TOR1AIP1	torsin A interacting protein 1	positive regulation of ATPase activity / protein localization to nucleus / nuclear membrane organization
TPST2	tyrosylprotein sulfotransferase 2	peptidyl-tyrosine sulfation / fusion of sperm to egg plasma membrane / prevention of polyspermy
TTC17	tetratricopeptide repeat domain 17	cell projection organization / actin filament polymerization / cilium organization
TXNDC15	thioredoxin domain containing 15	cell redox homeostasis
UGT3A2	UDP glycosyltransferase family 3 member A2	cellular response to genisterin / flavonoid biosynthetic process / flavonoid glucuronidation
UGT8	UDP glycosyltransferase 8	protein localization to paranode region of axon / carbohydrate metabolic process / lipid metabolic process / sphingolipid metabolic process / galactosylceramide biosynthetic process / cytoskeleton organization / central nervous system development / peripheral nervous system development / axon cargo transport / metabolic process / lipid glycosylation / paranodal junction assembly / neuron projection morphogenesis
WWP1	WW domain containing E3 ubiquitin protein ligase 1	signal transduction / central nervous system development / metabolic process / viral process / protein ubiquitination / modulation by virus of host morphology or physiology / ion transmembrane transport / protein ubiquitination involved in ubiquitin-dependent protein catabolic process / proteasome-mediated ubiquitin-dependent protein catabolic process / negative regulation of transcription, DNA-templated / viral entry into host cell / transmembrane transport
WWP2	WW domain containing E3 ubiquitin protein ligase 2	negative regulation of transcription from RNA polymerase II promoter / cellular protein modification process / negative regulation of gene expression / viral process / protein ubiquitination / modulation by virus of host morphology or physiology / negative regulation of transporter activity / regulation of ion transmembrane transport / regulation of membrane potential / protein ubiquitination involved in ubiquitinadependent protein catabolic process / proteasome-mediated ubiquitin-dependent protein catabolic process / negative regulation of sequence-specific DNA binding transcription factor activity / negative regulation of transcription, DNA-templated / viral entry into host cell / negative regulation of protein transport / protein autoubiquitination / protein K63-linked ubiquitination / regulation of potassium ion transmembrane transporter activity
YAP1	Yes-associated protein 1	vasculogenesis / embryonic heart tube morphogenesis / regulation of transcription, DNA-templated / transcription from RNA polymerase II promoter / transcription initiation from RNA polymerase II promoter / cellular response to DNA damage stimulus / cell proliferation / positive regulation of cell proliferation / gene expression / regulation of keratinocyte proliferation / keratinocyte differentiation / negative regulation of epithelial cell differentiation / notochord development / somatic stem cell maintenance / hippo signaling / regulation of cell proliferation / negative regulation of apoptotic process / positive regulation of transcription from RNA polymerase II promoter / positive regulation of organ growth / paraxial mesoderm development / lateral mesoderm development / contact inhibition / cellular response to gamma radiation / regulation of stem cell proliferation / positive regulation of canonical Wnt signaling pathway / negative regulation of extrinsic apoptotic signaling pathway

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 11-15

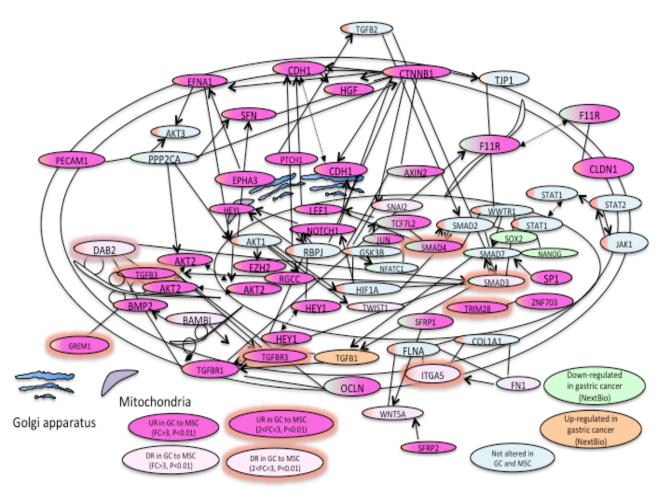


Figure 3. Network model for PTCH1 and EMT-related genes.

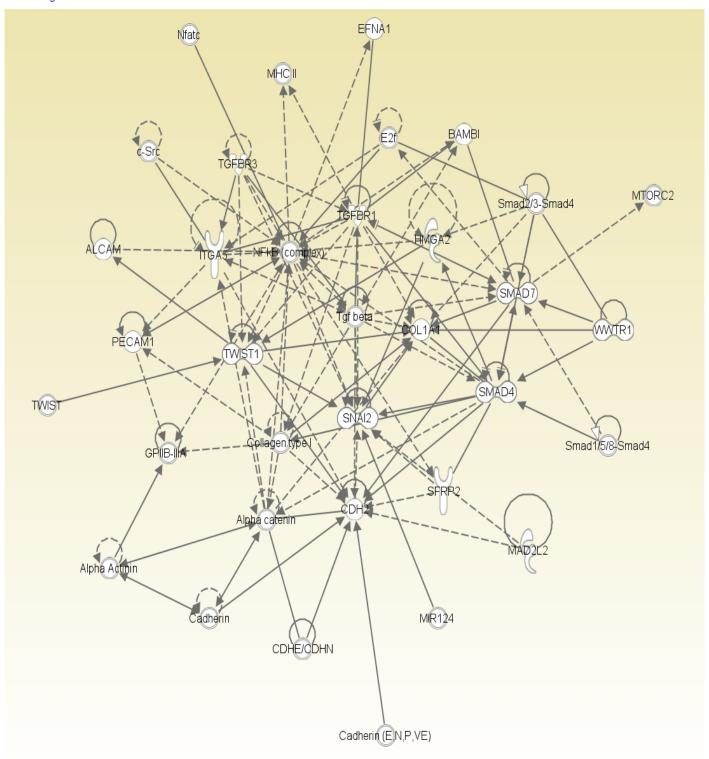
Network model for PTCH1 and EMT-related genes are shown. The up-regulated (UR) genes in diffuse-type gastric (GC) compared to mesenchymal stem cells (MSCs) are shown in pink, whereas down-regulated (DR) genes are shown in light purple. Genes with fold change (FC) greater than 3 and p value less than 0.01 are shown. The genes showing FC between 2 and 3, and p value less than 0.01 are highlighted with beige. UR genes in GC in NextBio database are shown in an orange gradient, whereas DR genes are shown in green gradient. The genes not altered in GC and MSCs are shown in light blue (FC < 2 or p > 0.05).

interactors in Homo sapiens, which have been further reduced to 88 interactors after subtracting 6 pre-published interactors. Caveolin 1, caveolae protein, 22kDa (CAV1) and smoothened, frizzled class receptor (SMO) also interact with PTCH1 [1,22]. From the reconstituted complex of purified proteins, PTCH1 was revealed to interact with YES-associated protein 1 (YAP1), which plays an important role in Hippo signalling pathway [23].

Discussion

The Hedgehog signalling pathway, which is a major network involving PTCH1, is evolutionarily conserved in the development and maintenance of tissues [24]. Expression patterns of PTCH1 are important for stage- and tissue-specific regulation in the Hedgehog response [24]. The human PTCH1 gene plays a role as a tumour suppressor and a developmental regulator [25-27]. Through investigations of mouse Patched mutants, PTCH1 has been revealed to regulate growth and neural pattern formation in the cerebellum and in neural development, which implicates the Hh-PTCH pathway as a potential target for tumour therapies [25]. The previous research studying cyclin-dependent kinase inhibitors in mice heterozygous for Ptch1 has revealed that PTCH1 collaborates with p27Kip1 to prevent medulloblastoma [28]. The investigation of Ptch1 heterozygous mice

has also revealed that the loss of Ptch1 subsequent induces senescence, followed by tumour proliferation with p16ink4a inactivation and p53 mutation [29].


A study using zebrafish indicated that the ptch1/2 gene has differential expression during larval head development [30]. The Ptch1 gene regulates morphological formation Lake Malawi cichlids [31]. Further investigations into the connection between tumour suppressive effects and skeletal formation, both regulated by PTCH1, are needed.

It is known that the myeloid cell leukaemia 1 (MCL1), which is overexpressed in cancer, can be inhibited with an MCL1 inhibitor S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. The inhibition of MCL1 results in repressing cancer activity, which implicates this overexpressed protein as a target for future cancer therapies [32]. Considering that PTCH1 is a tumour suppressor and is mutated in several cancers, the upregulation of PTCH1 in diffuse-type GC compared to MSCs may have some importance in terms of targeted therapy.

Immunohistochemistry data has revealed that VIM, a mesenchymal marker, of which gene expression was up-regulated in one probe set and down-regulated in another probe set in diffuse-type GC compared to MSCs, was expressed intratumoral vessels and negative in primary

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 12-15

Path Designer Network 1

© 2000-2018 QIAGEN. All rights reserved.

Figure 4. Network generated by Ingenuity Pathway Analysis (IPA)

A network generated with PTCH1 and EMT-related genes included ALCAM, BAMBI, CDH2, COL1A1, EFNA1, HMGA2, ITGA5, MAD2L2, PECAM1, SFRP2, SMAD4, SMAD7, SNAI2, TGFBR1, TGFBR3, TWIST1 and WWTR1. It was associated with cardiovascular system development and function, and cellular movement.

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 13-15

lesions in GC [33]. VIM was queried for network analysis in cBioPortal for Cancer Genomics, which resulted in PTCH1 model network generation including VIM.

The metastasis was induced by stemness promotion by HER2, WNT4 or RANKL [34]. The activation of migration was observed in migration/sphere-formation assays [34]. The high-throughput 3D screening system for EMT inhibitors has revealed that TGF-beta receptor I inhibitor SB431542 suppressed the EMT-related phenotypic changes such as mRNA level alteration of CDH1, CDH2, VIM and zinc finger E-box binding homeobox 1 (ZEB1) [35].

A database, such as the National Health and Nutritional Examination Survey (NHANES), which allows the correlation analysis of gene expression, cancer types, and caner stages, and patient demographics and phenotypes, may be useful to understand cancer mechanism and improve public health [36].

In conclusion, the Hedgehog receptor PTCH1 gene expression was found to be up-regulated in diffuse-type GC compared to MSCs in microarray analysis. PTCH1 and EMT-related molecular network was generated, which may reveal the EMT mechanism in diffuse-type GC and stem cells.

Acknowledgements

We gratefully acknowledge Dr Ryoji Kushima for the pathological and clinical evaluations. We would also like to thank Ms. Rie Komatsuzaki and Ms. Fumiko Chiwaki for their technical assistance. This study was supported in part by the National Institute of Biomedical Innovation, the Ministry of Health, Labour and Welfare of Japan, National Cancer Centre Research and Development Fund, the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Princess Takamatsu Cancer Research Fund. The authors would like to thank Dr. Akihiko Hirose and Dr. Takashi Yamada for supporting the preparation of the manuscript. The authors would like to thank Prof. Kei Yura for introducing us to the VaProS database. This research is supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from Japan Agency for Medical Research and Development (AMED).

Supported by the National Institute of Biomedical Innovation Fund, the Ministry of Health, Labour and Welfare of Japan Fund, National Cancer Centre Research and Development Fund, the Ministry of Education, Culture, Sports, Science and Technology of Japan Fund, and the Princess Takamatsu Cancer Research Fund.

Institutional review board statement: Diffuse-type gastric cancer (GC) tissues were originally provided by the National Cancer Centre Hospital after obtaining written informed consent from each patient and approval from the National Cancer Centre Institutional Review Board (ID: No. 17-030). Existing, publicly available data were analysed in the article.

References

- Carpenter D, Stone DM, Brush J, Ryan A, Armanini M, et al. (1998) Characterization
 of two patched receptors for the vertebrate hedgehog protein family. *Proc Natl Acad Sci USA* 95: 13630-13634. [Crossref]
- Chen H, Wang J, Yang H, Chen D, Li P (2016) Association between FOXM1 and hedgehog signaling pathway in human cervical carcinoma by tissue microarray analysis. Oncol Lett 12: 2664-2673. [Crossref]
- 3. Chen XL, Chinchilla P, Fombonne J, Ho L, Guix C, et al. (2014) Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog. *Mol Cell Biol* 34: 3855-3866. [Crossref]

- Mishra P, Panda A, Bandyopadhyay A, Kumar H, Mohiddin G (2015) Sonic Hedgehog Signalling Pathway and Ameloblastoma - A Review. J Clin Diagn Res 9: ZE10-13. [Crossref]
- Chung JH, Larsen AR, Chen E, Bunz F (2014) A PTCH1 homolog transcriptionally activated by p53 suppresses Hedgehog signaling. J Biol Chem 289: 33020-33031. [Crossref]
- Li R, Cai L, Hu CM, Wu TN, Li J (2015) Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis. J Inflamm (Lond) 12: 24. [Crossref]
- Panwalkar P, Moiyadi A, Goel A, Shetty P, Goel N, et al. (2015) miR-206, a cerebellum enriched miRNA is downregulated in all medulloblastoma subgroups and its overexpression is necessary for growth inhibition of medulloblastoma cells. *J Mol Neurosci* 56: 673-680. [Crossref]
- Singh SR (2013) Cancer stem cells: recent developments and future prospects. Cancer Lett 338: 1-2. [Crossref]
- Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H (2016) Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells 8: 384-395. [Crossref]
- Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, et al. (2016) Tissue-specific mutation accumulation in human adult stem cells during life. *Nature* 538: 260-264. [Crossref]
- Tanabe S, Aoyagi K, Yokozaki H, Sasaki H (2014) Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. *Int J Oncol* 44: 1955-1970. [Crossref]
- Tanabe S, Sato Y, Suzuki T, Suzuki K, Nagao T, et al. (2008) Gene expression profiling
 of human mesenchymal stem cells for identification of novel markers in early- and latestage cell culture. *J Biochem* 144: 399-408. [Crossref]
- Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, et al. (2013) Integrative analysis
 of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:
 pll. [Crossref]
- Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov* 2: 401-404. [Crossref]
- Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513: 202-209. [Crossref]
- Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, et al. (2006) BioGRID: a general repository for interaction datasets. *Nucleic Acids Res* 34: D535-D539. [Crossref]
- 17. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, et al. (2015) Proteomics. Tissue-based map of the human proteome. *Science* 347: 1260419. [Crossref]
- The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45: D158-158D169. [Crossref]
- Kupershmidt I, Su QJ, Grewal A, Sundaresh S, Halperin I, et al. (2010) Ontologybased meta-analysis of global collections of high-throughput public data. PLoS One 5. [Crossref]
- Krämer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. *Bioinformatics* 30: 523-530. [Crossref]
- 21. Tanabe S, Aoyagi K, Yokozaki H, Sasaki H (2015) Regulated genes in mesenchymal stem cells and gastric cancer. World J Stem Cells 7: 208-222. [Crossref]
- Karpen HE, Bukowski JT, Hughes T, Gratton JP, Sessa WC, et al. (2001) The Sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. *J Biol Chem* 276: 19503-19511. [Crossref]
- Schuchardt BJ, Mikles DC, Hoang LM, Bhat V, McDonald CB, et al. (2014) Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity. FEBS J 281: 5532-5551. [Crossref]
- Lorberbaum DS, Ramos AI, Peterson KA, Carpenter BS, Parker DS, et al. (2016) An
 ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by
 patched/Ptch1. Elife 5: e13550. [Crossref]
- Goodrich LV, MilenkoviÄ L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277: 1109-1113. [Crossref]
- Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, et al. (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841-851. [Crossref]

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 14-15

- Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, et al. (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668-1671. [Crossref]
- 28. Ayrault O, Zindy F, Rehg J, Sherr CJ, Roussel MF (2009) Two tumor suppressors, p27Kip1 and patched-1, collaborate to prevent medulloblastoma. *Mol Cancer Res* 7: 33-40. [Crossref]
- Tamayo-Orrego L, Wu CL, Bouchard N, Khedher A, Swikert SM, et al. (2016) Evasion
 of Cell Senescence Leads to Medulloblastoma Progression. Cell Rep 14: 2925-2937.
 [Crossref]
- Pashay Ahi E, Walker BS, Lassiter CS, Jónsson ZO (2016) Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development. *PeerJ* 4: e1878. [Crossref]
- Roberts RB, Hu Y, Albertson RC, Kocher TD (2011) Craniofacial divergence and ongoing adaptation via the hedgehog pathway. Proc Natl Acad Sci U S A 108: 13194-13199. [Crossref]

- Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, et al. (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. *Nature* 538: 477-482. [Crossref]
- Iwatsuki M, Mimori K, Fukagawa T, Ishii H, Yokobori T, et al. (2010) The clinical significance of vimentin-expressing gastric cancer cells in bone marrow. *Ann Surg Oncol* 17: 2526-2533. [Crossref]
- Hosseini H, ObradoviÄ MM, Hoffmann M, Harper KL, Sosa MS, et al. (2016) Early dissemination seeds metastasis in breast cancer. Nature. [Crossref]
- Arai K, Eguchi T, Rahman MM, Sakamoto R, Masuda N, et al. (2016) A novel high-throughput 3D screening system for EMT inhibitors: a pilot screening discovered the EMT inhibitory activity of CDK2 inhibitor SU9516. PLoS One 11: e0162394. [Crossref]
- Patel CJ, Pho N, McDuffie M, Easton-Marks J, Kothari C, et al. (2016) A database of human exposomes and phenomes from the US National Health and Nutrition Examination Survey. Sci Data 3: 160096. [Crossref]

Copyright: ©2018 Tanabe S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Stem Cell Res Med, 2018 doi: 10.15761/JSCRM.1000128 Volume 3(1): 15-15