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Abstract
The most awful complication COVID-19 is hypoxemia due to respiratory failure. The mechanisms of lung damage and hypoxemia in COVID-19 include ventilation/
perfusion mismatch, loss of hypoxic vasoconstriction and increased coagulopathy. Hence, it is of particular attention that acute lung injury, hypoxemia, systemic 
inflammatory response syndrome, acute respiratory distress syndrome (ARDS) occurs after SARS-CoV-2 infection. Cytokine storm in COVID-19 patients is 
centrally involved in the aggravation of symptoms and disease development, and denotes a key factor contributing to ARDS and mortality. Indeed, there is a close 
relationship between lung damage, hypoxemia and the cytokine storm. Other important issue is to consider the possible presence of happy of silent hypoxemia, which 
is described in patients with pronounced arterial hypoxemia who don’t express a sense of dyspnea. Moreover, pulse oximetry (PO) should be interpreted with caution, 
because due to left-sided shifting of the oxyhemoglobin dissociation curve during hypocapnia periods, PO might measure a normal oxygen saturation in spite of very 
low PaO2. Continuous positive air pressure (CPAP) is nowadays the preferred method of non-invasive ventilation (NIV) management of COVID-19 patients, has 
significant and helpful role in Covid-19 management, mainly if it is used in an early phase of the disease, because it may prevent clinical deterioration and reduce the 
need for invasive ventilation at all. We strongly recommend to early use CPAP in all Covid-19 patient who present the first mild respiratory symptoms, such as cough, 
or light tachypnea and hyperpnea, etc., when they are still outside the ICUs, i.e. in regular wards or at patient’s homes. This method would prevent periods of hypopnea 
and hypoxia which can stimulate the synthesis of ACE in lung endothelial cells, leading to cytokine storm, which can cause ARDS, multi-organ failure, and death.
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Introduction
One of the gravest complications of SARS-CoV-2 infection is the 

development of an atypical upper respiratory tract pneumonia that 
enforces a major challenge to clinicians in terms of disease management 
[1]. A substantial proportion of patients who are admitted to intensive care 
units (UCIs) worsen in a short period of time, leakproof clinical states, and 
die from acute respiratory distress syndrome (ARDS) [2-10].

The most awful complication COVID 19 is hypoxemia due to 
respiratory failure. The mechanisms of lung damage and hypoxemia 
in COVID 19 include ventilation/perfusion mismatch, loss of hypoxic 
vasoconstriction and increased coagulopathy. Hence, it is of particular 
attention that acute lung injury, hypoxemia, systemic inflammatory 
response syndrome (SIRS), and ARDS occur after SARS-CoV-2 
infection [9,10,11-14].

An abnormal and uncontrolled production of cytokines has 
been observed in critically ill patients with COVID-19 pneumonia. 
The subsequent uncontrolled cytokine storm in COVID-19 patients 
is centrally involved in the aggravation of symptoms and disease 
development, and denotes a key factor contributing to ARDS and 
mortality [15-21]. Indeed, there is a close inter-relationship between 
of lung damage, hypoxemia and the cytokine storm [11,22-30]. 
According to the current WHO guidance, supportive therapy remains 
the most significant management strategy for this disease, including 
supplemental oxygen therapy, conservative fluid management and 
empiric antimicrobial application. Furthermore, new treatment 
protocols need to be established in order to control the prolonged and 
progressive hypoxia of COVID-19 patients [31].

The treatment for severe respiratory failure in Covid-19 patients 
have included early intubation and invasive ventilation, as this was 
deemed preferable to be more effective than Non-Invasive Ventilation 
(NIV). Nevertheless, NIV may have a more significant and helpful role 
than firstly thought, mainly if it is used in an early phase of the disease. 
NIV avoids the need for sedation, allows easier communication with 
patient, and requires less intensive nursing care [32-35].

Hypoxia, cytokine storm and inflammation
The SARS-CoV-2 virus binds and infects the cells via utilizing 

angiotensin converting enzyme 2 (ACE-2) as a receptor, which is widely 
found in tissues of the organism. It has been suggested that increased 
levels of ACE-2 were positively associated with COVID- 19 infection. 
There are two types of ACE (ACE-1 and ACE-2) acting oppositely in 
pulmonary endothelium; ACE-2 functions as a vasodepressor whereas 
ACE-1 functions as a vasoconstrictor. Under physiological conditions, 
there is a dynamic equilibrium between ACE-1 and ACE-2. Though, 
in conditions of hypoxemia like in COVID-19 infection, ACE-1 is 
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upregulated by the hypoxia-inducible factor-1 (HIF-1); meanwhile 
the expression of ACE-2 is noticeably reduced. Subsequently, both 
hypoxemia and related ACE-2 upregulation may deteriorate clinical 
outcomes in COVID-19 [11,36-45].

The immune system has an exquisite mechanism capable of 
responding to various pathogens. Normal anti-viral immune response 
necessitates the activation of the inflammatory pathways of the 
immune system. Nevertheless, aberrant or exaggerated response of the 
host’s immune system can cause severe disease if remains uncontrolled 
[46-50].

The cytokine storm is an activation cascade of auto-amplifying 
cytokine production due to unregulated host immune response to 
dissimilar triggers. The term cytokine storm calls up bright images 
of an immune system gone awry and an inflammatory response 
burst out of control. The cytokine storm is a systemic inflammatory 
response to infections and drugs leading to excessive activation of 
immune cells and generating pro-inflammatory cytokines. Cytokines 
are an indispensable part of the inflammatory process. Cytokines are 
produced by several immune cells including the innate macrophages, 
dendritic cells, natural killer cells and the adaptive T and B lymphocytes 
[16,51-58].

Due to rapid endothelial dysfunction in the lungs, microthrombi 
may occur by activation of the coagulation system, resulting in 
drastic changes in blood rheology and causing organ failure due to 
hypoperfusion or misperfusion. In Covid-19, the aberrant release of 
pro-inflammatory factors leads to lung epithelial and endothelial 
cell apoptosis which damages the lung microvascular and alveolar 
epithelial cell barrier, leading to vascular leakage, alveolar edema 
and hypoxia [59-69]. Cytokine mediated injury of lung endothelial 
and epithelial cells may damage the integrity of blood/air barrier, 
thus promoting vascular permeability in addition to alveolar edema, 
infiltration by inflammatory cells (i.e. neutrophils and macrophages) 
and hypoxia. Certain kinds of cytokines trigger cell death, causing 
that a lot of tissue can die. In COVID-19, that tissue is mostly in the 
lung. As the tissue breaks down, the walls of the lungs’ tiny air sacs 
become leaky and fill with fluid, causing pneumonia and starving the 
blood of oxygen [24,68,70,71]. These phenomena also lead to lack of 
oxygen supply in the tissues or organs due to hypoperfusion of blood. 
Moreover, proinflammatory cytokines suppress the oxygen utilization 
of mitochondria, resulting in a change of metabolic pathway from 
oxidative phosphorylation to glycolysis, thus causing cells to change 
their mode of metabolism to glycolytic or anaerobic. Increased oxygen 
demands of infiltrated immune cells, reduced supply of metabolic 
substrates by blood clots and compression of blood vessels, and 
atelectasis of lung contribute to tissue hypoxia during inflammation, 
inducing hypoxemia, and triggering more proinflammatory cytokines 
[72-82].

Tissue hypoxia during inflammation is not just a simple passerby 
process, but can significantly affect the development or attenuation of 
inflammation by causing the regulation of hypoxia-dependent gene 
expression. Several studies analyzing cytokine profiles from COVID-19 
patients have suggested that the cytokine storm correlated directly 
with lung injury, hypoxemia, multi-organ failure, and unfavorable 
prognosis of severe COVID-19 [28,83-88].The exposure to hypoxia 
promotes several transcription factors, which plays a central role 
in stimulating the proinflammatory cytokines TNF-α and IL-6. 
Hypoxia is a microenvironmental feature of chronically inflamed 
tissues which can impact upon the progression of inflammation 

in a number of ways. HIF and NF-κB are two hypoxia- responsive 
transcription factors which, as well as controlling independent cohorts 
of adaptive and inflammatory genes, demonstrate a high degree of 
interdependence. Central to the activation of both the HIF and NF-κB 
pathways in hypoxia appear to be the oxygen- sensing hydroxylases. 
Certainly, the study of transcriptionally regulated tissue adaptation to 
hypoxia necessitates further research to help control hypoxia-induced 
inflammation and multiple organ failure [28,57,89-100]. Inflammatory 
cytokines. Cytokines are an indispensable part of the inflammatory 
process. Cytokines are produced by several immune cells including the 
innate macrophages, dendritic cells, natural killer cells and the adaptive 
T and B lymphocytes [16,51-58].

Happy or silent hypoxemia
Other very important issue to consider is the possible presence 

of “happy or silent hypoxemia”. One of the aspects perplexing 
clinicians who take care of COVID-19 patients with pronounced 
arterial hypoxemia, yet without proportional signs of respiratory 
distress, with even deceiving cyanosis, is that they don’t even express 
a sense of dyspnea. This phenomenon is referred as ‘happy or silent 
hypoxemia”. For clinicians the presence of happy or silent hypoxemia 
in Covid-19 patients, in spite of pronounced arterial hypoxemia, can 
erroneously lead to the conclusion that the patient is not in a critical 
condition. Those cases can quickly leapfrog clinical evolution stages 
and suffer ARDS, with concomitant cardiorespiratory arrest and death 
[59,101,105].

Pulse oximetry: changes in oxyhemoglobin dissociation 
curve

Pulse oximetry which measures oxygen saturation (SpO2) is very 
often used to detect hypoxemia. Nevertheless, SpO2 should be carefully 
interpreted in COVID-19. The sigmoid shaped oxyhemoglobin 
dissociation curve seems to shift to the left, due to induced respiratory 
alkalosis (drop in PaCO2) because of hypoxemia-driven tachypnea and 
hyperpnea. During hypocapnic periods, the affinity of hemoglobin for 
oxygen and thus oxygen saturation rises for a specified degree of PaO2, 
explaining why SpO2 can be well-preserved in the face of a profoundly 
low PaO2. In high altitude hypoxemia, hypocapnia significantly 
changes the oxygen-hemoglobin dissociation curve and recovers 
blood oxygen saturation. The alveolar gas equation also predicts that 
hyperventilation and the resulting drop in the alveolar partial pressure 
of CO2 produces an increment in the alveolar partial pressure of 
oxygen and  finally lead to a raise in  SpO2 [103,106].

Invasive or non-invasive ventilation in Covid-19 patients
Over the past decade, the use of noninvasive ventilation (NIV) in 

the setting of acute exacerbations of chronic obstructive pulmonary 
disease has gained popularity [32,107,108].The treatment for severe 
respiratory failure in Covid-19 patients have included early intubation 
and invasive ventilation, as this was deemed preferable to be more 
effective than Non-Invasive Ventilation (NIV). Nevertheless, evolving 
evidence has shown that NIV may have a more significant and helpful 
role than it was firstly considered. NIV avoids the need for sedation, 
allows easier communication with patient, and requires less intensive 
nursing care [32-35].

There are three types of NIV: High Flow Nasal Oxygen (HFNO), 
Continuous Positive Aire Pressure (CPAP) and BiPAP (Bi-Level 
Positive Airway Pressure) [32].
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High Flow Nasal Oxygen (HFNO)

HFNO therapy through a nasal cannula is a technique whereby 
heated and humidified oxygen is delivered to the nose at high flow 
rates. These high flow rates generate low level of positive pressure in 
the upper airways, and the fraction of inspired oxygen (FIO2) can 
be attuned by varying the fraction of oxygen in the driving gas. The 
high flow rates may also reduce physiological dead space by flushing 
expired CO2 from the upper airway, a process that possibly explains 
the observed decrement in the process of breathing. In patients with 
acute respiratory failure of various origins, high flow oxygen has been 
shown to result in better comfort and oxygenation than standard 
oxygen therapy delivered through a face mask [35,109]. Nonetheless, 
the use of HFVO remains controversial in suspected and confirmed 
severe cases of COVID-19 disease. As a result, currently in the UK, the 
national guidance does not recommend HFNO in COVID-19 because 
for the lack of evidence of efficacy, the high oxygen usage, and risk of 
infection spread [8,14,35,110].

Bilevel positive airway pressure (BiPAP)

BiPAP is commonly used in the care of patients with chronic 
respiratory disease, so it may be useful in COVID-19 patients. In 
COVID-19, BiPAP may have a clinical use to improve the work of 
breathing. However, it carries a risk that inappropriate settings may 
allow the patient to take an excessively large tidal volume causing baro 
and volutrauma. BiPAP allows for a high driving pressure coupled with 
a low driving pressure. Prior to commencing BiPAP, the patient must 
be assessed for a pneumothorax, ideally by a chest X-Ray or ultrasound. 
Due to the need for chest auscultation for COVID-19 patients, is not 
recommended as it increases the risk of transmission to the healthcare 
professional [8,111,112].

Continuous Positive Airway Pressure (CPAP)

CPAP is nowadays the preferred form of NIV in the management of 
COVID-19 patients. With improved and commercial available CPAP 
equipment, there is now growing evidence that it may be of benefit 
to patients in the disease process, avoiding hypoxia, and then may 
preventing deterioration and reducing the need for invasive ventilation 
at all [113-116]. CPAP is usually commenced at a higher level than 
normal intrinsic pressure around 5 cm H2O. For most patients with 
ARDS, it is secondary to conditions which either collapse the alveolar 
or widen the gap between the alveolar and the blood vessels that 
surround them thereby reducing gaseous exchange. The application 
of Positive End Expiratory Pressure (PEEP) assists in maintaining the 
patient’s airway pressure prevents alveolar collapse, in turn increasing 
lung volumes and distends them to reduce the distance between the 
alveolar and the blood vessels to improve gaseous exchange. In severe 
COVID-19, initial CPAP setting have been suggested 10 cm H2O and 
60% oxygen [14,110,112,116-122]. 

Conclusion
We strongly recommend to early use CPAP in all Covid-19 patient 

who present the first mild respiratory symptoms, such as cough, or light 
tachypnea and hyperpnea, etc., when they are still outside the ICUs, 
i.e. in regular wards or at patient’s homes. This method would prevent 
periods of hypopnea and hypoxia which can stimulate the synthesis of 
ACE in lung endothelial cells, finally leading to cytokine storm, which 
can cause ARDS and multi-organ failure [9,14,110,112,116,118].
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