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Abstract
The gene system of transcytosis, integrated by LRP2, AMN, CUBN, ARH, AMN and CUBN, might be important for the treatment and monitoring of chronic 
complications of diabetics, as well as for drug interactions, since they mediate the reuptake of vitamins such as B complex, folic acid and lipoproteins, which are closely 
related to the progression of diabetes. That is why polymorphisms in those genes could be targets of personalized medicine, to improve the quality of health care.
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It is important for both the clinical researcher and physician 
to explore new personalized treatment options for better care of the 
diabetic patient. The search for genetic or genomic markers in order to 
predict complications of disease, progression as well as to evaluate the 
therapeutic response to drugs and the presentation of adverse effects 
is an area to be explored, considering the high costs that represent the 
attention of diabetics to hospitals from the public sector. Other reasons 
are that type 2 diabetes mellitus (T2D) patients develop complications 
related with the progression of the disease, as well as, adverse and side 
effects resulting from drug interactions [1,2].

T2D commonly presents deficiency of vitamin B complex, 
associated with the long-term consumption of metformin. The 
consequences of this deficiency are increased cardiovascular risk, renal 
damage and higher risk of peripheral neuropathy and senile dementia 
[1,2]. Additionally, the chronic consumption of statins for the control 
of hypercholesterolemia and cardiovascular risk results in secondary 
dyslipidemia myocytes inflammation [1,2].

The common element that might explain the previously described 
complications and side effects in T2D diabetic patients is an axis 
of genes that encode for the system of transcytosis in the cellular 
membranes from small intestine, kidney, liver, striated muscle, and 
other tissues. The components of this transcytosis system are LRP2, 
AMN, CUBN, ARH, Dab2, GIPC, NHE3, ClC5, FcRn and NaPi-IIa, 
which mediate the reuptake of B complex vitamins, including folic acid 
among other molecules [3-10]. 

The clinical effect of these genes might be seen in the development 
of different diseases or clinical conditions (Table 1). Mutations in LRP2 
have been associated with diabetes, aminoglucosides response, Donnai-
Barrow syndrome (DBS), Facio-oculo-acoustic-renal syndrome 
(FOAR) and Alzheimer’s disease. While mutations in AMN and CUB 
occur with megaloblastic anemia plus albuminuria. CUBallelic variants 
are related to the progression of renal damage and ARH variations are 

associated with hypercholesterolemia [3-10]. NHE3 mutations show 
association with congenital sodium diarrhea, whereas ClC5 gene is 
related to renal failure or Dent disease. ClC5, FcRn, NaPi-IIa gene are 
related with metabolic renal disease. DAB2, GIPC has an uncertain 
meaning in human pathology, but their pathogenic effect must be 
explored [11-25].

Considering the interaction between these genes, it would be 
very useful to analyze the relationship between polymorphisms 
of single base changes (SNP) of these genes, or the blocks 
of haplotypes and haplogroups that can be constructed with sets of SNP 
in T2D patients. Specially, the relationship of such variants with the 
development of peripheral neuropathy and the appropriate metformin 
doses. Another field of research is to explore the relationship between 
the response to  statin  therapy and the development of  myocyte 
inflammation.  The results of this genetic exploration might be 
translated into predictive markers to prevent complications associated 
with the commonly used drugs in T2D, allowing a better attention to 
the patient. These and other personalized medicine protocols should 
be included by many governments, since they would improve the costs 
of health care, especially since these genes are directly responsible for 
renal, neurological and vascular damage, as has been demonstrated in 
genetic diseases, animal and experimental models.
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Gene Protein SNP or pathogenicmutation Reference

LRP2 Megalin

rs133980 (associated with hypertension), 
rs2544390 (associated with gout and alcohol drinking) 
rs1050700 (associated with glomerular filtration rate)
rs3755166, rs2075252, rs4668123 (associated with central adiposity), 
rs2075252 and haplotype GA of rs4667591/ rs2075252 (associated with bone mineral density), 
rs3755166 (associated with Alzheimer's disease
p.H498Q (associated with type 2 diabetes mellitus) 
c.+193826T/C (associated with hypercholesterolemia)

[3-4]

CUB Cubilin

rs1801239/p.I2984V(associated with diabetic nephropathy and albuminuria)
rs1801240/ p.G3002E (associated with diabetic nephropathy and albuminuria)
p.L2153F (associated with albuminuria)
p.I2984V (associated with diabetic nephropathy)
p.Q3002G (associated with diabetic nephropathy)
rs7918972 (associated with proteinuria)

[5,8]

AMN Amnionless

c.35delA, p.Gln12Argfs*5 (associated Imerslund-Gräsbeck Syndrome)
c.206 T > A, p.Met69Lys 5 (associated Imerslund-Gräsbeck Syndrome)
p.Val2865Met 5 (associated Imerslund-Gräsbeck Syndrome)
c.363G>A , exon 5 (associated Imerslund-Gräsbeck Syndrome)
c.829A>G (T276A), c.1339_1344dup GCCGGG, c.-87C>G ,c.-87C>G , c.-27T>C, c.-23G>C, c.296-75_-
66dup GCGTGGCGTG, c.843+11C>T, c.1169+42C>G, c.1170-6C>T, c.1362+38G>C, c.1362+518C>T, 
c.1362+523G>A (associated with recurrent spontaneous abortions).
14delG, 122C>T (recessive megaloblastic anemia)

[7,12,13]

ARHor 
LDLRAP1

Low density lipoprotein 
receptor adaptor 
protein 1

p.T56M, del 1.6kb exon 4  (recessive hypercholesterolemia).
p.P202S, p.P202H, p.R238Trp (determinants of plasma cholesterol levels) [14-16]

DAB2 Clathrinadaptorprotein rs148700350,  rs200879578 , rs200879578, rs200754366            
Gene Bank, Not yet 
studied, Uncertain 
significance

GIPC PDZ domain containing 
family member 1 rs770458112, rs764183065, rs369693566, rs373945556, rs775587781, rs770090326, rs752071186    

Gene Bank, Not yet 
studied, Uncertain 
significance

SLC9A3 or 
NHE3

Solute carrier family 9 
member A3

c.1145G>A,c.932C>T , c.[379G>A; 963_964delGT] , c.[379G>A; 963_964delGT] , c.805G>A , c.1446+1G>A , 
c.782dupG , c.1153G>A c.1145G>A, (congenital sodium diarrhea).
p.R474Q, p.V567M, p.R799C (decrease NHE3 transporter activity).
G1131A and C1197T (sudden infant death syndrome and sudden infant death syndrome)

[17-19]

CLCN5 o CLC5 Chloridevoltage-
gatedchannel 5 p.T657S, p.R345W and p.Q629X, insertion in codon 650 Alu(Dent disease) [20-21]

FCGRTorFcRn Fc fragment of IgG 
receptor and transporter VNTR of promoter region (Response to cetuximab) [22]

SLC34A1
 or NaPi-IIa

Solute carrier family 34 
member 1

c.1484G>A, p.R95H (hypophosphatemia and nephrocalcinosis).
91del7, p.A133V and p.H568Y (calcium nephrolithiasis with renal phosphate leak).
p.R215W, p.C336G, p.V498E, p.W488R, IVS6(+1)G>A, IVS9(+3_6)del, IVS12(+1)G>A (associated with 
Idiopathic Infantile Hypercalcemia)

[23-25]

Table 1. Genotype of the of the endocytosis system
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