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Abstract
Nowadays, there is a tremendous scope for development of safe and effective drug for the management of epilepsy with decreased adverse effects. Scorpion has been 
used to treat epilepsy for several of years, while symptomatic acute epileptic seizures may occur in up to 5% of individuals, especially children, with scorpion stings. 
Navs are composed of a pore-forming α and auxiliary β subunits, and scorpion venom are classified into α and β which both can active on Navs. Herein, we briefly 
describe the roles of scorpion’s toxins and its bidirectional effects to the pathogenetic mechanism and therapeutic target of epilepsy.
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Introduction
Epilepsy is a serious and chronic neurological disorder that affects 

no fewer than 50 million population globally [1]. The highest risk of 
epilepsy is in the neonatal period [2], while the highest incidence is in 
the elderly population across the lifespan [3]. Although great advances 
have been made in the development of new antiepileptic drugs, 
like vigabatrin, levetiracetam, topiramate, lamotrigine, zonisamide, 
lacosamide, rufinamide and stiripentol have been developed for 
epilepsy treatment [4]. However, seizures in 20-30% of patients remain 
refractory to therapies using conventional antiepileptic drugs [5], and 
all the currently available synthetic anticonvulsant drugs are prone to 
cause one or more side/adverse effects such as neurotoxicity, dizziness, 
impaired concentration and cognition function, mental slowing, ataxia, 
mental confusion, sleep disturbance, anorexia, somnolence, aggression 
and so on [6]. Therefore, there is a tremendous scope for development 
of safe and effective drug for the management of epilepsy with decreased 
adverse effects.

In the past few years, hundreds of polypeptide toxins with 
multipharmacological effects have been purified from the venom 
of scorpions, spiders, and wasps, and the scorpion’s venom are most 
widely studied [7]. Some of these polypeptides have either convulsant 
or anticonvulsant activity and the latter have been considered to 
be potential candidates for antiepileptic drugs [8]. On the one 
hand, scorpion has been used to treat various neurological disorder 
symptoms for over two thousand years and it is the foremost choice 
for epileptic treatment as a traditional Chinese medicine [9]. On the 
other hand, symptomatic acute epileptic seizures may occur in up to 
5% of individuals, especially children, with scorpion stings. Hence, a 
comprehensive description of scorpion’s toxins and its bidirectional 
effects to the pathogenetic mechanism and therapeutic target of 
epilepsy has the potential and profound impetus function.

Voltage-gated sodium channels (Navs) are crucial components 
in neurotransmission, which are responsible for the generation and 
propagation of action potentials (AP) along neurons [10]. Based on the 
opening in response to membrane depolarization Navs allow sodium 
entry and thus the continuation of depolarization along the plasma 
membrane[11]. Navs are composed of a pore-forming α and auxiliary 
β subunits, the pore forming α subunit is a single-polypeptide chain 
which consists of DI–DIV structural domains, each domain has a 
voltage-sensing domain (VSD; S1–S4 segments) and a pore-forming 
domain (S5–S6 segments). The related research suggested that DI–
III VSDs govern the pore opening of the Navs, whereas the DIV VSD 
controls its fast inactivation [11-14]. Scorpion venom is one of these 
toxins or (and) drugs active on Navs, is formed by cysteine-stabilized 
α-helix and β-sheet (CSαβ) fold cross-linked by four disulfied bridges 
[15], and the scorpion toxins are classified into two distinct type (α and 
β, both are gating modifier toxins) based on the pharmacological effects 
and channel binding properties [16,17]. Alpha-scorpion toxins mainly 
bind to the loop connecting S3 and S4 in Nav domain IV and inhibit 
the fast inactivation of Nav channels without dramatically affecting 
activation of the channels [18-24]. Beta-scorpion toxins mainly binds 
to the Domain II VSD and holds that VSD in the activated state and 
increase Na+ currents by shifting the threshold of Nav activation in the 
hyperpolarized direction by more than 20 mV [25-29].
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So far, Nav1.1 to Nav1.9, nine sodium homologous structures have 
been shown [30]. Among these Navs, mutations in the genes encoding 
Nav 1.1, 1.2, and 1.6 are highly associated with epilepsy: mutations 
of SCN2A (encoding Nav1.2) [31-33] and SCN8A (encoding Nav1.6) 
[34,35] are the major causes of genetic epilepsy, the heterozygous loss 
of function mutation of SCN1A (encoding Nav1.1) is associated with 
Dravet syndrome spectrum disorders [36,37], but the connection 
between Nav1.3 and epilepsy is unclear. These toxins and drugs which 
can modify sodium channel activity have been widely used as tools to 
study physiological and/or pathological synaptic mechanisms including 
seizures occur, and at least six sites of toxin binding have been identified 
[38]. Herein, we further summarized the bidirectional mechanism of 
scorpion’s toxins in convulsant and anticonvulsant as well as the roles of 
Nav mutations in the scorpion toxins effects.

The convulsant effects of scorpion’s toxins 

Venomous animals are spread throughout the globe, most species 
of these animals use their venom for predation or defense, especially 
concerning scorpion’s species [39]. Scorpions are a rather depauperate 
group within the class Arachnida with approximately 2200 known 
species up to the present [40]. The scorpion poisoning syndrome 
is a public health problem tropical region of the world, around 8000 
scorpion envenomation accidents are reported every year in Brazil [41], 
and 14,569 cases were notified in the USA in 2001 [42]. Concerning the 
capacity of scorpion venom to induce convulsion and the highest risk 
of epilepsy in the neonatal period, severe intoxication in children with 
the presence of seizures were reported [43-45], which even secondary 
to an extensive destructive brain lesion [46]. Recent study suggesting 
that these deleterious effects induced by scorpion toxins may be a 
consequence of neuronal damage, also could be due to the results of 
seizures interfere with developmental processes of immature brain [47]. 
Moreover, that deleterious effects on the brain play a major role on the 
lethality induced by scorpion envenoming [48]. Furthermore, Nencioni 
ALA, et al. [49] reviewed the main effects caused by scorpion venoms, 
including myocardial damage, cardiac arrhythmias, pulmonary 
edema and shock-are mainly due to the release of mediators from 
the autonomic nervous system, also the central nervous system and 
inflammatory response participated in the process. 

So far, sorts of polypeptide scorpion toxins with 
multipharmacological effects have been purified, which part of 
these polypeptides have been performed in the rodent studies. 
Scorpion venom is formed by mucopolysaccharides, hyaluronidase, 
phospholipase, serotonin, histamine, and protease inhibitors. The 
clinical manifestations of scorpion venom intoxication exclusively result 
from the action of α- and β-toxins [15-17]. The α-toxin is present in 
the venom of Androctonus australis Hector, Androctonus mauretanicu 
mauretanicus, Buthus eupeus, Buthus occitanus tunetanus, Leiurus 
quinquestriatus, and T serrulatus, whereas the β-toxin can be found 
in the venom of Centruroides sculpturatus, Centruroides suffusus 
suffusus, and T serrulatus.  

Alpha-type scorpion toxin (TsTX) are peptides of 60-76 amino 
acid residues in length and tightly bound by four disulfide bridges, 
animal experiments have shown that these toxins modified the 
gating mechanism of the Na+-channel function affecting either the 
inactivation (-toxins) or the activation (-toxins) kinetics of the channels 
suggesting TsTx is Na+ channel specific scorpion toxin of the α type 
[38,50]. TsTX causes incremental overall internal concentrations of 
sodium and calcium ion, increases channel depolarization time and 
consequently induces excessive neurotransmitters release such as 

glutamate in a dose dependent manner. The earliest study of related 
TsTX, Carvalho FF, et al. intrahippocampal administration of TS-8F 
toxin, a neuropeptide isolated from Tityus serrulatus scorpion venom, 
which caused neuronal damage in CA1 and CA2 pyramidal cells and 
granular cells of the dentate gyrus, induced high-frequency and high-
voltage spikes that evolved to seizure activity in the hippocampus and 
cortex, and resulted in epileptic seizure behavior, suggested the TsTx 
could lead to changes of neuronal excitability affecting the susceptibility 
of the central nervous system to convulsions induced by various agents 
[15,50]. 

Compared with TsTX, beta-type scorpion toxin (TiTX-gamma) 
caused little increase of internal sodium and calcium ion concentrations 
at low doses while evoked a significant increased release of glutamate 
[51]. Actually, one of the earliest studies found tityustoxin, an active 
venom component of the Brazilian yellow scorpion Tityus serrulatus, 
induced specific release of the glutamate, GABA and aspartate 
neurotransmitter in the synaptosomes of rats superfused sensori-motor 
cortex due to a depolarising action [52,53]. Also, AF Bicalho found 
tityustoxin which binds to sodium channel toxin site 3, have an effect in 
the increase of glutamate release, Na+ influx, [Ca2+]i, depolarization and 
exocytosis at steady state in the rat cerebrocortical isolated nerve endings 
[54]. These provides an interesting perspective concerning modulation 
of neurotransmitter release via pharmacological manipulation of Na+-
channel properties, that may lead to a better comprehension of its 
physiological and pathological roles.

The anticonvulsant effects of scorpion’s toxins 

Epilepsy treatment remains challenging in the clinic, and many 
treatments for epilepsy are still in the exploration stage. Scorpion 
has been the foremost choice for epileptic treatment as a traditional 
Chinese medicine [9], exhibiting strong anti-epileptic effects, and the 
anti-epileptic peptide isolated from the scorpion is more potent [55]. 
Earlier study that Zhou XH isolated and purified an anti-epilepsy 
peptide (AEP) from venom of the scorpion Buthus martensii Karsch, 
showing strongly inhibited epilepsy induced by coriaria lactone and 
cephaloridine [56]. Later research that Miguel Corona, et al. isolated 
a novel toxin from the venom of the scorpion Centruroides limpidus 
limpidus Karsch, named Cll9, which immediately induced sleep when 
i.c.v. injected in the rat, suggesting a neurodepressant effect and the 
inhibiting effect of Na+ permeability in (cultured) rat peripheral ganglia 
further supports its neurodepressant actions. However, this peptide did 
not affect other Na+ channels such as those from cerebellum granular 
cells in culture or the rSkM1 Na+ channels expressed in HEK293 [57]. 

Buthus martensii Karsch (BmK) is a widely distributed scorpion 
species in Asia, which has been used to treat epilepsy for a long time. 
Even the scorpion components remain difficult to determine and its 
anti-epileptic mechanisms remains poorly understood, it has been 
speculated that the inhibition of hippocampal astrocyte activity are 
associated with its anti-epileptic effects [58]. Yi Liang, et al. discovered 
that the ethanol extracts of scorpion show anti-epileptic effect through 
decreasing hippocampal glial fibrillary acidic protein expression in 
a rat model of lithium chloride-pilocarpine induced epilepsy [58]. 
Moreover, scorpion extract plays a neuroprotective role and inhibits 
neuronal apoptosis following seizure, prevents glial cell scar formation 
in epileptic rats, and downregulate transcription factors associated with 
GFAP gene expression [59-63]. 

Up to now, several neurotoxins, BmK M1, M4, M8 (mammalian 
specific) and BmK IT and IT2 (insect specific) have been identified. All 
the cDNAs of BmK M1, BmK M9 [14] and BmK IT have been cloned, 
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while the genomic structures of BmK P01, P03 and P05, BmKTX, 
BmTX1 and TX2 , and Bm-12 have also been elucidated [64]. As far 
as can be determined, the α-toxins bind to receptor site 3 of voltage-
gated Na+ channels of vertebrates when the membranes are polarized.  
BmK I, an α-like neurotoxic polypepytide , has been shown to have 
potent nociceptive actions and to prevent epileptic seizures [65-69]. 
The β-toxins bind to receptor site 4 of vertebrate Na+ channels causing 
the opening of Na+ channels at more negative potentials. BmK IT2, 
BmK AS, and BmK AS-1 have been identified as β-type neurotoxins 
[70] and has been shown to inhibit peak tetrodotoxin sensitive (TTX-S) 
and tetrodotoxin-resistant (TTX-R) sodium currents, while only BmK 
IT2 has been detected as an effective anticonvulsant in animal seizure 
models by modulating sodium channels [71].

The different roles of Navs in epilepsy

Navs mediate the generation and propagation of electrical signals 
(AP) in excitable tissues such as brain, spinal cord and peripheral nerve, 
and muscle [72-74]. The α and β subunits form the Navs structure, 
and that α subunits consist of four domains (I-IV), each with six 
transmembrane segments (S1-S6,S1-S4 forming the voltage sensor; S5-
S6 contributing to the central ion-conducting pore) [72]. In mammals, 
nine α subunits (Nav1.1-1.9) have been identified which are encoded 
by the genes SCN1A-5A and SCN8A-11A) [75]. At present the gene 
(SCN1A-5A and SCN8A-11A) mutation of sodium channels (Nav1.1-
1.9, except Nav1.3) is a significant cause of abnormal excitability 
underlying human disease including epilepsy (especially with Nav1.1,1.2 
and1.6), periodic paralysis, cardiac arrhythmia, and pain syndromes.

SCN1A

SCN1A is recognized as the most important epilepsy gene 
discovered to date. It encodes the alpha 1 subunit of the voltage gated 
sodium channel. Mutations in SCN1A have been reported in patients 
with different types ofepilepsy, including generalized epilepsy with 
febrile seizures plus, severe myoclonic epilepsy in infancy, malignant 
migrating partial seizures in infancy [76]. With Computational analysis 
of single nucleotide polymorphisms in SCN1A gene of epilepsy, 
which implicates sodium voltage gated channel function play a key 
role in epilepsy, the most commonly mutated gene in epilepsy being 
SCN1A. SCN1A alleles cause protein truncation either by nonsense 
or frameshift mutation, and a large proportion of missense mutations 
studied in vitro confer a loss-of-function phenotype to the channel 
protein [77]. Nav1.1, managed by SCN1A, was clustered predominantly 
at the axon initial segments of parvalbumin-positive (PV) interneurons 
and involved in sustained high-frequency firing of neocortical 
fast-spiking interneurons. For knock-in mouse line with a loss-of-
function nonsense mutation in the SCN1A gene, both homozygous 
and heterozygous knock-in mice developed epileptic seizures within 
the first postnatal month. In heterozygous knock-in mice, trains of 
evoked action potentials in these fast-spiking, inhibitory cells exhibited 
pronounced spike amplitude decrement late in the burst [78].

SCN2A

In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed 
in excitatory neurons with a steady increase and redistribution from 
proximal (i.e., axon initial segments) to distal axons. Mutations in 
the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 
are associated with epilepsies, intellectual disability, and autism [79]. 
SCN2A mutation of patients cause atypical generalized epilepsy 
with febrile seizures plus [80]. SCN2A gain-of-function (increased 
or accelerated, but not toxic) has been recognized as a cause of early 

infantile-onset severe epileptic encephalopathies such as ohtahara 
syndrome, whereas loss-of-function SCN2A mutations underlie ASD or 
intellectual disability with later-onset mild epilepsy or without epilepsy 
[81,82]. Focal epilepsy phenotype is caused by transgenic expression of 
an engineered Nav1.2 mutation displaying enhanced persistent sodium 
current in Scn2aQ54 mouse [77,78]. It has been reported that the α-like 
scorpion toxin BmK I can enhance membrane excitability via persistent 
sodium current by preventing slow inactivation and deactivation of 
rNav1.2a expressed and induce the INaP, which may be involved in the 
BmK I-induced epilepsy.

SCN8A

SCN8A encodes the voltage-gated sodium channel Nav1.6, and 
SCN8A-related epilepsies are associated with developmental and 
epileptic encephalopathies (DEE) including West Syndrome and 
Lennox-Gastaut Syndrome, as well as benign familial infantile epilepsy 
(BFIS) and patients with intellectual disability (ID) without epilepsy 
[83,84]. The SCN8A-related DEEs are severe epilepsies, often with 
refractory seizures, severe cognitive impairment and features such 
as cognitive visual impairment and spontaneous bone fractures [85]. 
Alleles that reduce the activity of Scn8a are known to increase resistance 
to acute seizures, reducing seizure severity and improving survival of 
Scn1a epileptic mutant mice [86-88]. However, reduced Scn8a activity 
also leads to non-convulsive absence epilepsy in mice [89] and humans 
[90]. Nav1.6 is the principal sodium channel implicated in the generation 
of resurgent current in cerebellar Purkinje and dorsal root ganglia 
neurons [90], and spontaneous mutations of Nav1.6 in the mouse 
result in neurological disorders including tremor, dystonia, ataxic gait, 
paralysis, and juvenile lethality [91,92]. The β-toxins purified from 
scorpion venoms of the Centruroidesspecies affect several voltage-gated 
sodium channels (VGSCs), which more affected resulted to be Nav1.6 > 
1.1 > 1.2 and induced resurgent current also in isoforms different from 
Nav1.6, suggested that the scorpion toxins play Antiepileptic effects 
with Nav1.1, Nav1.2, play the opposite role with Nav1.6 [93]. Moreover, 
CssII is another β-scorpion peptide that modifies preferentially sodium 
currents of the voltage-dependent Na+ channel (Nav1.6) sub-type by the 
amidated C-terminal of the CssII toward its interaction to the Nav1.6 
receptor [94]. 

Conclusion
Scorpion venoms have been used to treat epilepsy, while scorpion 

toxins also induce  epileptic seizures. Navs are composed of a pore-
forming α and auxiliary β subunits, and scorpion venom are classified 
into α and β which both can active on Nav 1.1, 1.2 and 1.6 (Nav1.6 > 
1.1 > 1.2), which may further participant in the pathogenesis or treat 
mechanism of epilepsy. Hence, further study should be performed to 
detect the bidirectional effects of scorpion venoms to the pathogenetic 
mechanism and therapeutic target of epilepsy.
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