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Abstract
Type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycaemia and insulin resistance, is part of the metabolic syndrome and an independent risk factor 
for cardiovascular and cerebrovascular events, being particularly associated with carotid atheromatous disease. Arterial stiffness and reduced vasodilatation present 
in diabetes are induced by multiple mechanisms at molecular level. Chronic accumulation of advanced glycation end products (AGEs) and depletion of nitric oxide 
(NO) lead to oxidative stress that enhances inflammatory cytokine cascades. Concurrently, overproduction of vasoconstrictors promotes smooth muscle cell migration 
and endothelium impairment. Thus, chronic inflammation leads to cellular senescence through interaction with cellular regulatory systems. Consequently, vascular 
functionality is deteriorated, while vessel wall thickening and formation of atheromatous plaques are precipitated, resulting in carotid disease. So, effective glycaemic 
control and pharmaceutical modification of cell regulatory systems may be able to prevent diabetic vascular complications. This review summarizes current evidence on 
the issue aiming to a deeper understanding of these pathogenic mechanisms that will contribute to the development of targeted diagnostic and treatment approaches.

Introduction 
Diabetes mellitus (DM) is a heterogeneous pathological entity 

characterized by an absolute or relative deficiency of insulin secretion 
and action that results in chronic hyperglycaemia, if untreated [1]. 
Its spectrum of pathogenic disorders ranges from the autoimmune 
destruction of beta- pancreatic cells and subsequent pancreatic inability 
to produce insulin (type 1 DM) to inadequate insulin secretion and 
impaired response of target cells to it (type 2 DM) [2]. Most prevalent 
in general population worldwide though is type 2 DM. This condition 
is strongly related with the metabolic syndrome, which is defined by 
the alteration of at least three out of the five following parameters: 
abdominal obesity, high triglycerides, low high-density lipoprotein 
(HDL) cholesterol levels, elevated blood pressure, and elevated fasting 
glucose [3].

The aforementioned dysmetabolic status of chronic hyperglycaemia 
and insulin resistance seen in type 2 DM, entails a number of 
complications remaining a primary cause of mortality and morbidity 
especially in older ages. Diabetic long-term consequences include end-
organ dysfunction, such as peripheral and autonomic (gastrointestinal 
and genitourinary) neuropathy as well as microvascular (nephropathy 
and retinopathy) and macrovascular disorders (coronary and 
cerebrovascular disease) [2]. 

Thus, DM has been identified as an independent risk factor for 
cardiovascular events, including carotid artery atherosclerosis and 
stenosis [4]. Carotid disease clinically manifested as stroke, transient 
ischemic attack (TIA) or syncope due to cerebral hypoperfusion or 

arterial embolism, is characterized by vascular wall thickening as well 
as by the formation of atheromatous plaques vulnerable to rupture. 
These structural and functional changes define a dynamic procedure 
known as vascular ageing, which is different from normal ageing as an 
entity, beginning at a young age under the impact of risk factors such as 
obesity, dyslipidaemia and hyperglycaemia (components of metabolic 
syndrome) [5].

Taking into account the high prevalence of carotid disease among 
diabetic patients and its clinical significance for healthcare, we are 
convinced that the elucidation of underlying pathology could contribute 
to a thorough understanding of the disease.

At this point, it is worth mentioning that diabetes mellitus is a major 
public health problem estimated to be affecting more than 550 million 
people within the next decade [2,4]. Current data support that its 
complications from large and small vessels share the same pathological 
background [4]. Carotid atheromatous disease, an important clinical 
issue among diabetic patients, has been studied and described in 
the context of cardiovascular disease and a large body of evidence 
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underlines the role of macroscopic and morphological changes of 
vascular wall in the progression of atheromatous disease [5].

This review aims to address pathogenic mechanisms leading 
to structural and functional alterations in carotid atherosclerosis 
in particular. It underlines the relation of cellular pathways with the 
pathology of this critical large vessel. This mechanistic approach will 
allow a deeper comprehension of carotid atheromatous disease as a 
separate entity.

Moreover, the article aims to highlight the perspective of new 
therapies and prevention methods with the help of biomedical sciences. 
It focuses on the role of senescence, a recently recognized cellular 
process involved in the disease and a very interesting new field in 
biomedical sciences.

Thus, we have performed a comprehensive search online and 
collected data on pathogenic mechanisms at intracellular and molecular 
level to summarize current evidence in literature.

Association of metabolic syndrome and vascular disease 
Multiple studies have reported the robust relation between metabolic 

syndrome, carotid disease and confirmed relevant alterations in blood 
flow [1-6]. This demonstrates a higher pulse wave velocity in carotid 
arteries of diabetic patients along with age [6-9]. Especially two of the 
metabolic syndrome components-hypertension and hyperglycaemia - 
not obesity or hypertriglyceridemia- were associated with subclinical 
carotid atherosclerosis, suggesting that efficient metabolic control can 
prevent occurrence of carotid disease [10]. Similarly, HbA1c (glycated 
haemoglobin), a common marker of glycaemic control in type 2 DM, 
has been considered to be a useful marker for the prediction of carotid 
atheromatous disease, being associated independently with elevated 
carotid intima media thickness (cIMT) but not with the development 
of plaques [11]. In addition, daily glucose fluctuations are related with 
cIMT in a linear way and associated with progression of atherosclerosis 
in older diabetics with a long duration of diabetes. Hence, proper 
glycaemic control can also delay the progression of carotid disease 
[12]. Finally, other studies indicate that the carotid plaque score 
(independently) but not cIMT alone can be a useful tool for the 
prediction of diabetic microvascular complications. This underlines 
that asymptomatic diabetic patients with a high carotid score are in 
need of special care in order to avoid further vascular complications 
[11]. 

The main underlying mechanism of the above clinical outcomes is 
arterial stiffness and reduced vasodilatation because of abnormalities 
in endothelial and vascular smooth muscle cell function [13]. These 
conditions are independently associated with cardiovascular disease 
[14] (Homeostasis Model Assessment) precipitated by the dysfunction 
of endothelial cells, on which insulin resistance and hyperglycaemia 
in type 2 DM have a deteriorating effect [13-18]. Atherosclerosis’ 
consequences though are further exacerbated by vascular calcification 
and cartilaginous metaplasia according to preclinical studies on mutant 
mice [19,20]. Hyperglycaemia, hyperlipidaemia and subsequent 
insulin resistance intensify the formation of calcium lesions and the 
osteochondrogenic differentiation of smooth muscle cells through 
a process mediated by advanced-glycation-end products and their 
receptor [21]. At cellular level, inflammation, Reactive Oxygen Species 
(ROS) generation and subsequent senescence have been identified as 
the major factors triggering vascular injury in DM. For example, Vpo1, 

a recently discovered peroxidase with a significant role in induction 
of senescence on endothelial cells has been associated with vascular 
complications of DM according to preclinical studies [22]. 

Endothelial cells, constituting a layer located strategically between 
circulating blood and the vascular wall, have an active and regulatory role 
concerning vascular function, structure and homeostasis. They release 
numerous substances in order to adjust blood flow and nutrient supply, 
and to prevent thrombosis and leukocyte diapedesis. As mentioned 
above, DM alters the functions of multiple systems, including vessels, 
being associated with cardiovascular and cerebrovascular disease and 
other microvascular or macrovascular complications [22,23].

In fact, diabetic milieu, as characterized by hyperglycaemia, free 
fatty acid excess and insulin resistance, promotes oxidative stress, 
inflammation and subsequent cellular senescence via numerous 
intracellular pathways that affect endothelial and smooth muscle cells. 
Endothelial dysfunction has been detected in various studies on arteries 
of diabetic subjects in vivo and ex vivo [23-29]. Vascular changes in DM 
are quite similar to those of vascular ageing, resulting in impaired vessel 
functionality (Flowchart).

A number of mechanisms contributing to vascular dysfunction 
related with diabetes mellitus are described below in order to show their 
impact on the progression of carotid disease (Figure 1 and Table 1).

Flowchart. Impaired vessel functionality

Figure 1. Metabolic derangements in type 2 diabetes mellitus affect vascular function 
through multiple mechanisms
Overproduction of cytokines such as TNF-a (tumor necrosis factor-a) and IL6 (interleukin 
6) accelerate inflammation, production of ROS (reactive oxygen species) and oxidative 
stress. Especially NF-κΒ (nuclear factor kappa-B) is an inflammatory cytokine that regulates 
multiple cellular pathways. Hyperglycaemia, in particular, is a major stress stimulus 
that leads to generation of AGEs (advanced glycation end products) that in turn enhance 
inflammation and senescence. In addition, hyperglycaemia affects microRNAs and other 
cellular regulatory systems (SIRT1 (sirtuin), FOXO1/2(forkhead box protein O1/2), Nampt 
(Nicotinamide phosphoribosyltransferase), Nrf2 (Nuclear factor erythroid 2-related factor 
2)) inducing senescence. At the same time, diabetic milieu causes upregulation of COX2 
(cyclooxygenase 2) and iNOS (inducible nitric oxide synthase), resulting in generation 
of vasoconstrictors (thromboxane and prostaglandins). Thus, an overall depletion of NO 
(nitric oxide) levels contribute to endothelial dysfunction and vascular disease.
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Diabetic vascular inflammation and subsequent cellular 
senescence

First of all, inflammation and DM are reciprocally related. DM 
induces inflammation while chronic inflammation –related with cellular 
senescence- stimulates onset of diabetes. Experimental evidence shows 
that high leukocyte count, neutrophilia in particular, is associated 
with insulin resistance and occurrence of diabetes, demonstrating the 
value of inflammatory biomarkers in the assessment and prediction 
of incidence not only of diabetes, but also of its complications [30]. 
According to data from the Diabetes Control and Complications Trial 
(DCCT) [31] as well as from other studies [32-34], higher plasma 
levels of CRP (C-reactive protein) and other inflammatory markers are 
associated with diabetic vascular dysfunction, especially cardiovascular 
disease risk. CRP, in particular, contributes to exacerbation of 
osteochondrogenic trans differentiation and calcification of primary 
human aortic smooth muscle cells (HAoSMCs) through promotion of 
oxidative stress [35].

NO (nitric oxide) depletion induces endothelial 
dysfunction

The aforementioned metabolic derangements mediate 
abnormalities in endothelial cell function by affecting the synthesis 
or degradation of NO. An extensively studied condition in fact is the 
endothelium dysfunction deriving from NO depletion. It is known that 
NO generated by endothelial NO synthase is responsible for vascular 
wall relaxation and for the protection of the vessel from endogenous 
injury. It controls signalling pathways that inhibit platelet and leukocyte 
adhesion as well as vascular smooth muscle cell proliferation and 
migration into the intima while it lessens their tone. Any decrease of 
NO levels (due to decreased production or increased degradation) leads 
to augmented activation of inflammatory cascades, overexpression of 
pro-inflammatory cytokines, leukocyte and monocyte interaction with 
vessel wall, vascular smooth muscle cell migration and formation of 
macrophage foam cells. These procedures already known to promote 
atherosclerosis have been reported in type 1 and 2 diabetic patients, 
highlighting its atherogenic impact [28,36-38]. 

Hyperglycaemia triggers inflammatory pathways 
So, hyperglycaemia seems to induce a series of cellular reactions 

that increase the production of reactive oxygen species (superoxide 
anion) that inactivate NO into peroxynitrite [39,40]. Peroxynitrite 
uncouples NOS (NO synthase) triggering further superoxide anion 
production. Superoxide anion then promotes a cascade of endothelial 
processes that enhance oxygen-derived free radicals’ generation. For 
example, activation of protein kinase C (PKC), by glucose is implicated 
in the modulation of membrane-associated NAD(P)H (Nicotinamide 
adenine dinucleotide phosphate)-dependent oxidases activity for the 
production of superoxide anion. Hence, this chain of events causes 
overabundance of superoxide anion rather than NO [36-39].

Apart from NO, numerous circulating cytokines have been 
identified in diabetes underlying its inflammatory potential [40,41]. 
Overexpression of pro-inflammatory molecules, such as IL-1β 
(interleukin-1β) and IL-6 (interleukin-6), TNF-α (tumor necrosis 
factor- a), NF-кB, (nuclear factor- kappa B) myeloperoxidase and 
ICAM (intercellular adhesion molecule), has been correlated with 
vascular dysfunction in diabetic patients [42-44]. Higher levels of the 
inflammatory adipokine, leptin, are related with the development of 
type 2 diabetes [45]. However, prevalence of the anti-inflammatory 
adipokine, adiponectin diminishes risk for DM onset but also protects 
diabetic patients from cardiovascular disease according to findings 
from experimental animal studies [46,47].

Similarly, up-regulation of anti-inflammatory cytokine IL-10 
gene in diabetic rats seems to prevent endothelial dysfunction [48]. 
Hyperglycaemia-induced ROS (reactive oxygen species) formation in 
endothelial cells triggers NF-кB transcription that initiates signalling 
of inflammatory pathways involving VEGF (vascular endothelial 
growth factor), TNF-α, IL-1β, which through a positive feedback loop, 
enhance transcription of this factor [49,50]. Multiple interactions of the 
aforementioned molecules and triggering of relevant cytokine cascades 
promote inflammation leading to atherosclerosis. 

Increased synthesis of vasoconstrictors leads to vascular 
dysfunction in diabetes mellitus

Impaired vasodilatation in DM is a consequence not only 
of decreased NO production but also of increased synthesis of 
vasoconstricting prostanoids and endothelin [51-54], mostly due 
to the prevalent hyperglycaemic status. Vasoconstrictors, especially 
endothelin, are responsible for diabetes’ effects on vascular smooth 
muscle cells by promoting their migration into the intima, elevating their 
tone and contributing to inflammation (increased PKC activity, NF-kB 
production, and oxygen free radicals) ending up to the progression 
of atherosclerosis [51-57]. In atherosclerotic plaques, vascular 
smooth muscle cells produce then a matrix of metalloproteinases and 
undergo apoptosis making the plaque more vulnerable to rupture. 
In particular, hyperglycaemia seems to increase the expression of 
inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) 
and vasoconstricting prostanoids in both endothelial and vascular 
smooth muscle cells according to findings of in vitro and in vivo studies 
(human cell cultures and animal models [58-60]. Other experimental 
studies on mice have demonstrated that deletion of the iNOS gene 
and thus conservation of NO preserves endothelial vasorelaxation in 
carotid arteries as well as the animals’ cerebral arteriolar vasomotor 
function [38,61]. Up-regulation of COX-2 in atheromatous plaques 
of diabetic subjects [62] has been associated with elevated levels of 
thromboxane A2 (TXA2), prostaglandin E2 (PGE2), prostaglandin I2 

Cytokine cascades Transcription factors miRNAs
Increase

TGF-β1 FOXO1 miR-155
IL-6 FOXO3a miR-146a

ICAM NF-κΒ miR-4448
ROS PGC-1a miR-338-3p

AGEs miR-190a-5p
TNFa miR-485-5p
INF-γ miR-9-5p
IL-1β
NF-κΒ
CRP

TXA2
PGs

Decrease
NO Nrf2 miR-34a

IL-10 Sirt1 miR-27a
Nampt 

Table 1. Molecules involved in inflammation and senescence inducing carotid disease in 
diabetic patients
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(PGI2) as well as elevated arterial vascular smooth muscle tone [63-65]. 
Finally, hyperglycaemia-induced oxidative stress may increase levels 
of asymmetric dimethylarginine, a competitive antagonist of NOS, 
through blocking its degradation by dimethylaminohydrolase [66].

MicroRNAs involved in inflammation and cellular 
senescence in diabetes mellitus 

This inflammatory phenotype occurring in DM and similar 
conditions, such as ageing, seems to be regulated by a number of 
microRNAs. These microRNAs are already known to be inducers 
or suppressors of senescence. Although data is still scarce, the role 
of these macromolecules has been identified in several studies and 
experimental animal models. Firstly, hyperglycaemia related down-
regulation of miR-155 and miR-146a was reported in peripheral blood 
mononuclear cells from patients with type 2 diabetes [67]. Reduction 
of miR-146a reinforced inflammation in human aortic endothelial 
cells [68]. On the contrary, high glucose levels led to overexpression 
of miR-34a [69]. Similar dysregulations of miR-27a has been detected 
in tissues of diabetic rats [70] and in diabetic patients in correlation 
with fasting glucose. Furthermore, miR-4448, miR-338-3p, miR-190a-
5p, miR-485-5p, and miR-9-5p were found to be implicated in diabetic 
retinopathy in human subjects, regulating 55 target genes related with 
NAD metabolism, sirtuin, and aging [71,72]. 

Regulatory systems of inflammation and senescence in 
DM

Additional regulatory systems such as Nampt (Nicotinamide 
phosphoribosyl transferase), SIRT1 (sirtuin 1), FOXO1 (forkhead 
box protein O1), and PGC-1α (Peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha), related with cellular senescence, 
endothelial cell survival, redox states, vascular inflammation and 
bioenergetics have been reported to be implicated in diabetes. SIRT1, 
a member of sirtuins family considered to have anti-inflammatory 
effects [73], is reduced in endothelial and vascular smooth muscle 
cells of diabetic subjects in rats [74] as well as in endothelial cell 
cultures incubated in high glucose or hydrogen peroxide (H2O2) 
concentrations that induced their premature senescence [75-77]. Low 
SIRT1 levels were associated with p53 and FOXO1 activation and NO 
depletion [76-79]. Nrf2 (Nuclear factor erythroid 2-related factor 2) 
another modulatory molecule when inactivated by hyperglycaemia 
leads to endothelial dysfunction [80]. Moreover Nampt (senescence 
suppressor) overexpression enhances glycolysis and reduces ROS in 
high glucose-treated endothelial cells. Its rescue effect was dependent 
on SIRT1 activity and was inhibited by active FOXO1 [81-83]. 

In a high glucose concentration environment nuclear FOXO1 and 
FOXO3a activation in endothelial cells (- in vitro studies- of human 
aortic and rat brain/retinal cells) lead to production of peroxynitrite, 
consecutively to endothelial NO synthase (eNOS) dysfunction, and cell 
apoptosis [84-88]. Depletion of FOXO1/3/4 improved endothelial tissue 
insulin sensitivity and conserved normal angiogenesis in HFD (high in 
fat diet) -fed mice. 88 Similarly, ROS generation leads to an increase in 
PGC-1α levels in endothelial cells of diabetic mice, in cultures at high 
glucose environment, and in endothelial progenitor cells of diabetic 
patients [89]. Induction of PGC-1α seems to promote endothelial cell 
migration and angiogenesis through activation of Notch pathway and 
inhibition of Akt (Protein kinase B)/eNOS (endothelial NO synthase) 
signaling cascade, while its overexpression in experimental models 
(diabetic mice) leads endothelial dysfunction. On the other hand, 
partial genetic silencing of endothelial cells PGC-1α could have a 

protective effect in postischemic blood flow recovery in Type 1 and 
Type 2 diabetic mice and wound healing [89].

Role of mitochondrial metabolism in vascular 
dysfunction in DM

Endothelial cell metabolism though depends primarily on anaerobic 
glycolysis for baseline needs. For this reason, ECs express GLUT1 
(glucose transporter) that allows for higher glucose levels in ECs in a 
hyperglycaemic environment. However, endothelial cell survival and 
response to stress conditions is based on aerobic reaction and energy 
production from cell mitochondria, whose metabolism is impaired in 
hyperglycaemic conditions mediating exacerbation of oxidative stress 
[90,91].

Oxidative stress in DM
As a stress stimulus, long term hyperglycaemia slows the pentose 

phosphate pathway (PPP) flux through inhibition of glucose-6-
phosphate dehydrogenase (G6PD), diminishing NADPH (antioxidant) 
production [92]. At the same time, increased xanthine or NADPH 
(Nicotinamide adenine dinucleotide phosphate) oxidases activity 
produces superoxide anions that consume NO to peroxynitrite 
(ONOO–). 

What is more, chronic hyperglycaemia, ROS and RNS (reactive nitric 
species) accumulation cause DNA damage activating the enzyme poly-
ADP-ribose polymerase 1 (PARP1), which inactivates the glycolytic 
enzyme GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) by 
ADP (Adenosine diphosphate)-ribosylation [92-96]. 

Advanced glycation end products and endothelial 
dysfunction

In addition, slowing of the glycolytic flux causes glycolytic 
intermediates to accumulate directing metabolism into three 
glycolysis branch pathways that end up to the formation of advanced 
glycation end-products: 1) the hexosamine biosynthetic pathway 
2) the glycation pathway that involves angiogenic capacity under 
hyperglycaemia. 3) the polyol pathway (glucose converts to sorbitol to 
fructose 3- deoxyglucosone, a highly reactive α-oxo-aldehyde that non-
enzymatically generates toxic advanced glycation end-products (AGEs) 
(Maillard reaction) furtherly consuming NADPH and increasing ROS 
[92,97-99].

In particular, the AGES, substances of diverse structures with high 
reactivity and through multiple interactions, especially by binding to 
their receptor (RAGE) on endothelial cells, contribute to inflammation, 
leakage and ROS production. They activate arginase, blocking NO 
synthase and enhancing superoxide anion production, subsequent 
senescence and vascular dysfunction accelerate the progression of 
diabetic atherosclerosis and vascular calcification [100-104]. AGEs 
also enhance mitochondrial production of superoxide anion, which 
activates the hexosamine pathway, diminishing NOS activation by 
protein kinase Akt [105-115]. These processes promote oxidative stress 
by extracellular xanthine oxidase. As a result, endothelial vessel wall 
cells express pro-inflammatory phenotypes developing atherosclerosis 
[106,107].

Various AGEs have been studied in multiple studies, in fact. 
For example, AGE CML (Advanced glycation end-product Nε-
carboxymethyl-Lysine) has been shown to be correlated with vascular 
calcification and progression of atherosclerosis, especially asymptomatic 
carotid disease, in diabetic patients [100]. 
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Insulin resistance- induced-oxidative stress promoting 
senescence

Finally, it is worth mentioning the role of insulin resistance, which 
is a main feature of type 2 DM as well as a characteristic of the metabolic 
syndrome and a significant condition leading to cardiovascular 
diseases, including atherosclerosis. At cellular level, there is a clear 
differentiation between insulin resistance on EC bioenergetics and 
hyperglycaemia [108]. According to experimental data on animal 
models, insulin resistance is related with augmented release of free fatty 
acid (FFA) from adipose tissues. Then free fatty acids inducing oxidative 
stress, NO depletion and production of ROS exacerbate endothelial 
dysfunction [109-111]. The most important reason is the inhibition 
of the phosphatidylinositol-3 kinase pathway [112-114]. Production 
of the lipid second messenger diacylglycerol causes the membrane 
translocation and activation of PKC that inhibits the activity of the 
phosphatidylinositol 3 kinase pathway, causing limiting NO synthesis. 
Experimental studies have shown that diminished endothelium-
dependent relaxation of rabbit aorta exposed to elevated glucose levels 
is restored by PKC inhibition, while infusion of free fatty acids reduces 
endothelium- dependent vasodilation in animal models and humans in 
vivo [115-117].

Therapeutic Implications and Future Perspectives
An effective inhibition of inflammatory pathways can restore 

glycaemic control and prevent diabetic vascular complications [118]. 
Such anti-inflammatory interventions blocking IL-1β are likely to 
improve glycaemic status of in type 2 diabetic patients according 
to various studies [118-121]. Other approaches aiming to blockage 
of NF-κB, have similar effects on glycaemic status [122-126]. In 
the same context, medications with pleiotropic actions and anti-
inflammatory effects, such as rosiglitazone and atorvastatin, could 
delay diabetic vascular dysfunction [127,128]. Moreover, restoration 
of NO and mitochondrial superoxide levels as well as restriction of 
ROS generation and oxidative stress could have beneficial effects on 
endothelial function [129]. Similarly, the inhibition of PKC on healthy 
subjects seem to rescue normal vessel relaxation despite prevalence of 
hyperglycemia [130,131].

Another promising approach is the modulation of cellular regulatory 
systems, including microRNAs and other genes. Overexpression of 
miR-146a in rat aorta has been correlated with lower NF-κB levels and 
suppression of inflammation and senescence, according to preliminary 
evidence [132]. In general, bioenergetics (glycolysis, mitochondrial 
oxidative phosphorylation, oxidative stress) regulate cell cycle, survival, 
proliferation, differentiation and death [133-135]. Any intervention 

on them can alter cell fate. Finally, as insulin resistance and free 
fatty acid excess are primary therapeutical targets, drugs improving 
insulin sensitivity, such as metformin and thiazolidinediones, 
enhance endothelium-dependent vasodilation [134-139] through 
phosphatidylinositol-3 kinase pathway, and seem to have anti-
senescent effects [55-57,115-117]. Consistently, findings from several 
studies suggest that incretin treatment with GLP1 (glucagon-like 
peptide-1) analogues or DPP4 (dipeptidyl peptidase 4) inhibitors as 
well as with SGLT2 (sodium-glucose transport protein 2) inhibitors 
delays the evolution of atheromatous disease in diabetic patients 
through specific anti-inflammatory pathways [136-139]. There is 
still much to learn concerning pathogenesis of vascular disease in 
diabetes mellitus. The emersion of the field of senescence has offered 
a new perspective in the elucidation of pathogenic pathways and the 
development of innovative methods for prevention as well as for the 
diagnosis and treatment of diabetic vascular complications (Table 2).

In conclusion, carotid disease is a significant vascular complication 
occurring in diabetic patients. Development of atheromatous plaques 
and exacerbation of arterial stiffness are precipitated by metabolic 
disorders present in diabetes mellitus. A number of intracellular 
pathways seem to be implicated in the development of carotid disease. 
Underlying mechanisms involve chronic inflammation and cellular 
senescence that affect endothelial and smooth muscle cells [140]. 
In this review, we have demonstrated that chronic hyperglycaemia 
is the primary stress stimulus that alters cell metabolism and 
regulatory pathways that lead to vascular dysfunction and arterial 
stiffening, while free fatty acid accumulation and insulin resistance 
have a strong atherogenic potential. Thus, efficient glycemic control 
and antisenescent medications constitute promising therapeutic 
approaches [136-141].

Highlights
•	 Carotid atheromatous disease is a major clinical issue among 

diabetic patients.

•	 Diabetic milieu promotes oxidative stress, inflammation 
and subsequent cellular senescence leading to endothelial 
dysfunction.

•	 Inflammation and diabetes are reciprocally related.

•	 The senescent phenotype occurring in diabetes is regulated by 
microRNAs and other cellular systems.

•	 Antidiabetic medications with anti-senescent effects seem to 
delay the evolution of atheromatous disease in diabetic patients.

Senolytic factors (Death of 
senescent cells) GLP-1 analogues SGLT-2  inhibitors DPP-4 inhibitors Metformin Glyburide

Anti-inflammatory factors 
(Cascades suppression- 

increased NO bioavailability)

Atorvastatin (pleiotropic 
benefits) Kanacinuma (Il-1β Inhibitors) Rosiglitasone (pleiotropic 

benefits) NF-κB  inhibitors Salsalates

Modulators of regulatory 
pathways (Inhibition of 

senescence and inflammation)
Resveratrol (Sirt1 activator) miRNAs inhibitors or 

activators Tetrahydro-biopterin

Modification  of risk factors 
(Lifestyle changes preventing 

metabolic syndrome)
Exercise Caloric (fat and sugar) 

restriction Smoking cessation

Table 2. Therapeutic approach of carotid disease in diabetic patients
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