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Abstract

Type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycaemia and insulin resistance, is part of the metabolic syndrome and an independent risk factor
for cardiovascular and cerebrovascular events, being particularly associated with carotid atheromatous disease. Arterial stiffness and reduced vasodilatation present
in diabetes are induced by multiple mechanisms at molecular level. Chronic accumulation of advanced glycation end products (AGEs) and depletion of nitric oxide
(NO) lead to oxidative stress that enhances inflammatory cytokine cascades. Concurrently, overproduction of vasoconstrictors promotes smooth muscle cell migration
and endothelium impairment. Thus, chronic inflammation leads to cellular senescence through interaction with cellular regulatory systems. Consequently, vascular
functionality is deteriorated, while vessel wall thickening and formation of atheromatous plaques are precipitated, resulting in carotid disease. So, effective glycaemic
control and pharmaceutical modification of cell regulatory systems may be able to prevent diabetic vascular complications. This review summarizes current evidence on
the issue aiming to a deeper understanding of these pathogenic mechanisms that will contribute to the development of targeted diagnostic and treatment approaches.

Introduction

Diabetes mellitus (DM) is a heterogeneous pathological entity
characterized by an absolute or relative deficiency of insulin secretion
and action that results in chronic hyperglycaemia, if untreated [1].
Its spectrum of pathogenic disorders ranges from the autoimmune
destruction of beta- pancreatic cells and subsequent pancreatic inability
to produce insulin (type 1 DM) to inadequate insulin secretion and
impaired response of target cells to it (type 2 DM) [2]. Most prevalent
in general population worldwide though is type 2 DM. This condition
is strongly related with the metabolic syndrome, which is defined by
the alteration of at least three out of the five following parameters:
abdominal obesity, high triglycerides, low high-density lipoprotein
(HDL) cholesterol levels, elevated blood pressure, and elevated fasting
glucose [3].

The aforementioned dysmetabolic status of chronic hyperglycaemia
and insulin resistance seen in type 2 DM, entails a number of
complications remaining a primary cause of mortality and morbidity
especially in older ages. Diabetic long-term consequences include end-
organ dysfunction, such as peripheral and autonomic (gastrointestinal
and genitourinary) neuropathy as well as microvascular (nephropathy
and retinopathy) and macrovascular disorders (coronary and
cerebrovascular disease) [2].

Thus, DM has been identified as an independent risk factor for
cardiovascular events, including carotid artery atherosclerosis and
stenosis [4]. Carotid disease clinically manifested as stroke, transient
ischemic attack (TIA) or syncope due to cerebral hypoperfusion or
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arterial embolism, is characterized by vascular wall thickening as well
as by the formation of atheromatous plaques vulnerable to rupture.
These structural and functional changes define a dynamic procedure
known as vascular ageing, which is different from normal ageing as an
entity, beginning at a young age under the impact of risk factors such as
obesity, dyslipidaemia and hyperglycaemia (components of metabolic
syndrome) [5].

Taking into account the high prevalence of carotid disease among
diabetic patients and its clinical significance for healthcare, we are
convinced that the elucidation of underlying pathology could contribute
to a thorough understanding of the disease.

At this point, it is worth mentioning that diabetes mellitus is a major
public health problem estimated to be affecting more than 550 million
people within the next decade [2,4]. Current data support that its
complications from large and small vessels share the same pathological
background [4]. Carotid atheromatous disease, an important clinical
issue among diabetic patients, has been studied and described in
the context of cardiovascular disease and a large body of evidence
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underlines the role of macroscopic and morphological changes of
vascular wall in the progression of atheromatous disease [5].

This review aims to address pathogenic mechanisms leading
to structural and functional alterations in carotid atherosclerosis
in particular. It underlines the relation of cellular pathways with the
pathology of this critical large vessel. This mechanistic approach will
allow a deeper comprehension of carotid atheromatous disease as a
separate entity.

Moreover, the article aims to highlight the perspective of new
therapies and prevention methods with the help of biomedical sciences.
It focuses on the role of senescence, a recently recognized cellular
process involved in the disease and a very interesting new field in
biomedical sciences.

Thus, we have performed a comprehensive search online and
collected data on pathogenic mechanisms at intracellular and molecular
level to summarize current evidence in literature.

Association of metabolic syndrome and vascular disease

Multiple studies have reported the robust relation between metabolic
syndrome, carotid disease and confirmed relevant alterations in blood
flow [1-6]. This demonstrates a higher pulse wave velocity in carotid
arteries of diabetic patients along with age [6-9]. Especially two of the
metabolic syndrome components-hypertension and hyperglycaemia -
not obesity or hypertriglyceridemia- were associated with subclinical
carotid atherosclerosis, suggesting that efficient metabolic control can
prevent occurrence of carotid disease [10]. Similarly, HbAlc (glycated
haemoglobin), a common marker of glycaemic control in type 2 DM,
has been considered to be a useful marker for the prediction of carotid
atheromatous disease, being associated independently with elevated
carotid intima media thickness (cIMT) but not with the development
of plaques [11]. In addition, daily glucose fluctuations are related with
cIMT in a linear way and associated with progression of atherosclerosis
in older diabetics with a long duration of diabetes. Hence, proper
glycaemic control can also delay the progression of carotid disease
[12]. Finally, other studies indicate that the carotid plaque score
(independently) but not cIMT alone can be a useful tool for the
prediction of diabetic microvascular complications. This underlines
that asymptomatic diabetic patients with a high carotid score are in
need of special care in order to avoid further vascular complications
[11].

The main underlying mechanism of the above clinical outcomes is
arterial stiffness and reduced vasodilatation because of abnormalities
in endothelial and vascular smooth muscle cell function [13]. These
conditions are independently associated with cardiovascular disease
[14] (Homeostasis Model Assessment) precipitated by the dysfunction
of endothelial cells, on which insulin resistance and hyperglycaemia
in type 2 DM have a deteriorating effect [13-18]. Atherosclerosis’
consequences though are further exacerbated by vascular calcification
and cartilaginous metaplasia according to preclinical studies on mutant
mice [19,20]. Hyperglycaemia, hyperlipidaemia and subsequent
insulin resistance intensify the formation of calcium lesions and the
osteochondrogenic differentiation of smooth muscle cells through
a process mediated by advanced-glycation-end products and their
receptor [21]. At cellular level, inflammation, Reactive Oxygen Species
(ROS) generation and subsequent senescence have been identified as
the major factors triggering vascular injury in DM. For example, Vpol,
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a recently discovered peroxidase with a significant role in induction
of senescence on endothelial cells has been associated with vascular
complications of DM according to preclinical studies [22].

Endothelial cells, constituting a layer located strategically between
circulatingblood and the vascular wall, have an active and regulatory role
concerning vascular function, structure and homeostasis. They release
numerous substances in order to adjust blood flow and nutrient supply,
and to prevent thrombosis and leukocyte diapedesis. As mentioned
above, DM alters the functions of multiple systems, including vessels,
being associated with cardiovascular and cerebrovascular disease and
other microvascular or macrovascular complications [22,23].

In fact, diabetic milieu, as characterized by hyperglycaemia, free
fatty acid excess and insulin resistance, promotes oxidative stress,
inflammation and subsequent cellular senescence via numerous
intracellular pathways that affect endothelial and smooth muscle cells.
Endothelial dysfunction has been detected in various studies on arteries
of diabetic subjects in vivo and ex vivo [23-29]. Vascular changes in DM
are quite similar to those of vascular ageing, resulting in impaired vessel
functionality (Flowchart).

A number of mechanisms contributing to vascular dysfunction
related with diabetes mellitus are described below in order to show their
impact on the progression of carotid disease (Figure 1 and Table 1).
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Figure 1. Metabolic derangements in type 2 diabetes mellitus affect vascular function
through multiple mechanisms

Overproduction of cytokines such as TNF-a (tumor necrosis factor-a) and IL6 (interleukin
6) accelerate inflammation, production of ROS (reactive oxygen species) and oxidative
stress. Especially NF-«B (nuclear factor kappa-B) is an inflammatory cytokine that regulates
multiple cellular pathways. Hyperglycaemia, in particular, is a major stress stimulus
that leads to generation of AGEs (advanced glycation end products) that in turn enhance
inflammation and senescence. In addition, hyperglycaemia affects microRNAs and other
cellular regulatory systems (SIRT1 (sirtuin), FOXO1/2(forkhead box protein O1/2), Nampt
(Nicotinamide phosphoribosyltransferase), Nrf2 (Nuclear factor erythroid 2-related factor
2)) inducing senescence. At the same time, diabetic milieu causes upregulation of COX2
(cyclooxygenase 2) and iNOS (inducible nitric oxide synthase), resulting in generation
of vasoconstrictors (thromboxane and prostaglandins). Thus, an overall depletion of NO
(nitric oxide) levels contribute to endothelial dysfunction and vascular disease.
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Table 1. Molecules involved in inflammation and senescence inducing carotid disease in
diabetic patients

Cytokine cascades Transcription factors miRNAs
Increase
TGF-B1 FOXOI1 miR-155
IL-6 FOXO3a miR-146a
ICAM NF-kB miR-4448
ROS PGC-1a miR-338-3p
AGEs miR-190a-5p
TNFa miR-485-5p
INF-y miR-9-5p
IL-1B
NF-«xB
CRP
TXA2
PGs
Decrease
NO Nrf2 miR-34a
IL-10 Sirt1 miR-27a
Nampt

Diabetic vascular inflammation and subsequent cellular
senescence

First of all, inflammation and DM are reciprocally related. DM
induces inflammation while chronic inflammation -related with cellular
senescence- stimulates onset of diabetes. Experimental evidence shows
that high leukocyte count, neutrophilia in particular, is associated
with insulin resistance and occurrence of diabetes, demonstrating the
value of inflammatory biomarkers in the assessment and prediction
of incidence not only of diabetes, but also of its complications [30].
According to data from the Diabetes Control and Complications Trial
(DCCT) [31] as well as from other studies [32-34], higher plasma
levels of CRP (C-reactive protein) and other inflammatory markers are
associated with diabetic vascular dysfunction, especially cardiovascular
disease risk. CRP, in particular, contributes to exacerbation of
osteochondrogenic trans differentiation and calcification of primary
human aortic smooth muscle cells (HA0oSMCs) through promotion of
oxidative stress [35].

NO (nitric oxide) depletion induces endothelial
dysfunction

The aforementioned metabolic  derangements mediate
abnormalities in endothelial cell function by affecting the synthesis
or degradation of NO. An extensively studied condition in fact is the
endothelium dysfunction deriving from NO depletion. It is known that
NO generated by endothelial NO synthase is responsible for vascular
wall relaxation and for the protection of the vessel from endogenous
injury. It controls signalling pathways that inhibit platelet and leukocyte
adhesion as well as vascular smooth muscle cell proliferation and
migration into the intima while it lessens their tone. Any decrease of
NO levels (due to decreased production or increased degradation) leads
to augmented activation of inflammatory cascades, overexpression of
pro-inflammatory cytokines, leukocyte and monocyte interaction with
vessel wall, vascular smooth muscle cell migration and formation of
macrophage foam cells. These procedures already known to promote
atherosclerosis have been reported in type 1 and 2 diabetic patients,

highlighting its atherogenic impact [28,36-38].
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Hyperglycaemia triggers inflammatory pathways

So, hyperglycaemia seems to induce a series of cellular reactions
that increase the production of reactive oxygen species (superoxide
anion) that inactivate NO into peroxynitrite [39,40]. Peroxynitrite
uncouples NOS (NO synthase) triggering further superoxide anion
production. Superoxide anion then promotes a cascade of endothelial
processes that enhance oxygen-derived free radicals’ generation. For
example, activation of protein kinase C (PKC), by glucose is implicated
in the modulation of membrane-associated NAD(P)H (Nicotinamide
adenine dinucleotide phosphate)-dependent oxidases activity for the
production of superoxide anion. Hence, this chain of events causes
overabundance of superoxide anion rather than NO [36-39].

Apart from NO, numerous circulating cytokines have been
identified in diabetes underlying its inflammatory potential [40,41].
Overexpression of pro-inflammatory molecules, such as IL-1P
(interleukin-1B) and IL-6 (interleukin-6), TNF-a (tumor necrosis
factor- a), NF-kB, (nuclear factor- kappa B) myeloperoxidase and
ICAM (intercellular adhesion molecule), has been correlated with
vascular dysfunction in diabetic patients [42-44]. Higher levels of the
inflammatory adipokine, leptin, are related with the development of
type 2 diabetes [45]. However, prevalence of the anti-inflammatory
adipokine, adiponectin diminishes risk for DM onset but also protects
diabetic patients from cardiovascular disease according to findings
from experimental animal studies [46,47].

Similarly, up-regulation of anti-inflammatory cytokine IL-10
gene in diabetic rats seems to prevent endothelial dysfunction [48].
Hyperglycaemia-induced ROS (reactive oxygen species) formation in
endothelial cells triggers NF-kB transcription that initiates signalling
of inflammatory pathways involving VEGF (vascular endothelial
growth factor), TNF-a, IL-1B, which through a positive feedback loop,
enhance transcription of this factor [49,50]. Multiple interactions of the
aforementioned molecules and triggering of relevant cytokine cascades
promote inflammation leading to atherosclerosis.

Increased synthesis of vasoconstrictors leads to vascular
dysfunction in diabetes mellitus

Impaired vasodilatation in DM is a consequence not only
of decreased NO production but also of increased synthesis of
vasoconstricting prostanoids and endothelin [51-54], mostly due
to the prevalent hyperglycaemic status. Vasoconstrictors, especially
endothelin, are responsible for diabetes’ effects on vascular smooth
muscle cells by promoting their migration into the intima, elevating their
tone and contributing to inflammation (increased PKC activity, NF-kB
production, and oxygen free radicals) ending up to the progression
of atherosclerosis [51-57]. In atherosclerotic plaques, vascular
smooth muscle cells produce then a matrix of metalloproteinases and
undergo apoptosis making the plaque more vulnerable to rupture.
In particular, hyperglycaemia seems to increase the expression of
inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)
and vasoconstricting prostanoids in both endothelial and vascular
smooth muscle cells according to findings of in vitro and in vivo studies
(human cell cultures and animal models [58-60]. Other experimental
studies on mice have demonstrated that deletion of the iNOS gene
and thus conservation of NO preserves endothelial vasorelaxation in
carotid arteries as well as the animals’ cerebral arteriolar vasomotor
function [38,61]. Up-regulation of COX-2 in atheromatous plaques
of diabetic subjects [62] has been associated with elevated levels of
thromboxane A2 (TXA2), prostaglandin E2 (PGE2), prostaglandin 12
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(PGI2) as well as elevated arterial vascular smooth muscle tone [63-65].
Finally, hyperglycaemia-induced oxidative stress may increase levels
of asymmetric dimethylarginine, a competitive antagonist of NOS,
through blocking its degradation by dimethylaminohydrolase [66].

MicroRNAs involved in inflammation and cellular
senescence in diabetes mellitus

This inflammatory phenotype occurring in DM and similar
conditions, such as ageing, seems to be regulated by a number of
microRNAs. These microRNAs are already known to be inducers
or suppressors of senescence. Although data is still scarce, the role
of these macromolecules has been identified in several studies and
experimental animal models. Firstly, hyperglycaemia related down-
regulation of miR-155 and miR-146a was reported in peripheral blood
mononuclear cells from patients with type 2 diabetes [67]. Reduction
of miR-146a reinforced inflammation in human aortic endothelial
cells [68]. On the contrary, high glucose levels led to overexpression
of miR-34a [69]. Similar dysregulations of miR-27a has been detected
in tissues of diabetic rats [70] and in diabetic patients in correlation
with fasting glucose. Furthermore, miR-4448, miR-338-3p, miR-190a-
5p, miR-485-5p, and miR-9-5p were found to be implicated in diabetic
retinopathy in human subjects, regulating 55 target genes related with
NAD metabolism, sirtuin, and aging [71,72].

Regulatory systems of inflammation and senescence in
DM

Additional regulatory systems such as Nampt (Nicotinamide
phosphoribosyl transferase), SIRT1 (sirtuin 1), FOXO1 (forkhead
box protein O1), and PGC-la (Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha), related with cellular senescence,
endothelial cell survival, redox states, vascular inflammation and
bioenergetics have been reported to be implicated in diabetes. SIRT1,
a member of sirtuins family considered to have anti-inflammatory
effects [73], is reduced in endothelial and vascular smooth muscle
cells of diabetic subjects in rats [74] as well as in endothelial cell
cultures incubated in high glucose or hydrogen peroxide (H202)
concentrations that induced their premature senescence [75-77]. Low
SIRT1 levels were associated with p53 and FOXO1 activation and NO
depletion [76-79]. Nrf2 (Nuclear factor erythroid 2-related factor 2)
another modulatory molecule when inactivated by hyperglycaemia
leads to endothelial dysfunction [80]. Moreover Nampt (senescence
suppressor) overexpression enhances glycolysis and reduces ROS in
high glucose-treated endothelial cells. Its rescue effect was dependent
on SIRT1 activity and was inhibited by active FOXO1 [81-83].

In a high glucose concentration environment nuclear FOXO1 and
FOXO3a activation in endothelial cells (- in vitro studies- of human
aortic and rat brain/retinal cells) lead to production of peroxynitrite,
consecutively to endothelial NO synthase (eNOS) dysfunction, and cell
apoptosis [84-88]. Depletion of FOXO1/3/4 improved endothelial tissue
insulin sensitivity and conserved normal angiogenesis in HFD (high in
fat diet) -fed mice. 88 Similarly, ROS generation leads to an increase in
PGC-1a levels in endothelial cells of diabetic mice, in cultures at high
glucose environment, and in endothelial progenitor cells of diabetic
patients [89]. Induction of PGC-1a seems to promote endothelial cell
migration and angiogenesis through activation of Notch pathway and
inhibition of Akt (Protein kinase B)/eNOS (endothelial NO synthase)
signaling cascade, while its overexpression in experimental models
(diabetic mice) leads endothelial dysfunction. On the other hand,
partial genetic silencing of endothelial cells PGC-la could have a
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protective effect in postischemic blood flow recovery in Type 1 and
Type 2 diabetic mice and wound healing [89].

Role of mitochondrial metabolism in vascular

dysfunction in DM

Endothelial cell metabolism though depends primarily on anaerobic
glycolysis for baseline needs. For this reason, ECs express GLUT1
(glucose transporter) that allows for higher glucose levels in ECs in a
hyperglycaemic environment. However, endothelial cell survival and
response to stress conditions is based on aerobic reaction and energy
production from cell mitochondria, whose metabolism is impaired in
hyperglycaemic conditions mediating exacerbation of oxidative stress
[90,91].

Oxidative stress in DM

As a stress stimulus, long term hyperglycaemia slows the pentose
phosphate pathway (PPP) flux through inhibition of glucose-6-
phosphate dehydrogenase (G6PD), diminishing NADPH (antioxidant)
production [92]. At the same time, increased xanthine or NADPH
(Nicotinamide adenine dinucleotide phosphate) oxidases activity
produces superoxide anions that consume NO to peroxynitrite
(ONOO-).

Whatis more, chronic hyperglycaemia, ROS and RNS (reactive nitric
species) accumulation cause DNA damage activating the enzyme poly-
ADP-ribose polymerase 1 (PARP1), which inactivates the glycolytic
enzyme GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) by
ADP (Adenosine diphosphate)-ribosylation [92-96].

Advanced glycation end products and endothelial
dysfunction

In addition, slowing of the glycolytic flux causes glycolytic
intermediates to accumulate directing metabolism into three
glycolysis branch pathways that end up to the formation of advanced
glycation end-products: 1) the hexosamine biosynthetic pathway
2) the glycation pathway that involves angiogenic capacity under
hyperglycaemia. 3) the polyol pathway (glucose converts to sorbitol to
fructose 3- deoxyglucosone, a highly reactive a-oxo-aldehyde that non-
enzymatically generates toxic advanced glycation end-products (AGEs)
(Maillard reaction) furtherly consuming NADPH and increasing ROS
[92,97-99].

In particular, the AGES, substances of diverse structures with high
reactivity and through multiple interactions, especially by binding to
their receptor (RAGE) on endothelial cells, contribute to inflammation,
leakage and ROS production. They activate arginase, blocking NO
synthase and enhancing superoxide anion production, subsequent
senescence and vascular dysfunction accelerate the progression of
diabetic atherosclerosis and vascular calcification [100-104]. AGEs
also enhance mitochondrial production of superoxide anion, which
activates the hexosamine pathway, diminishing NOS activation by
protein kinase Akt [105-115]. These processes promote oxidative stress
by extracellular xanthine oxidase. As a result, endothelial vessel wall
cells express pro-inflammatory phenotypes developing atherosclerosis
(106,107].

Various AGEs have been studied in multiple studies, in fact.
For example, AGE CML (Advanced glycation end-product Ne-
carboxymethyl-Lysine) has been shown to be correlated with vascular
calcification and progression of atherosclerosis, especially asymptomatic
carotid disease, in diabetic patients [100].
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Insulin resistance- induced-oxidative stress promoting
senescence

Finally, it is worth mentioning the role of insulin resistance, which
is a main feature of type 2 DM as well as a characteristic of the metabolic
syndrome and a significant condition leading to cardiovascular
diseases, including atherosclerosis. At cellular level, there is a clear
differentiation between insulin resistance on EC bioenergetics and
hyperglycaemia [108]. According to experimental data on animal
models, insulin resistance is related with augmented release of free fatty
acid (FFA) from adipose tissues. Then free fatty acids inducing oxidative
stress, NO depletion and production of ROS exacerbate endothelial
dysfunction [109-111]. The most important reason is the inhibition
of the phosphatidylinositol-3 kinase pathway [112-114]. Production
of the lipid second messenger diacylglycerol causes the membrane
translocation and activation of PKC that inhibits the activity of the
phosphatidylinositol 3 kinase pathway, causing limiting NO synthesis.
Experimental studies have shown that diminished endothelium-
dependent relaxation of rabbit aorta exposed to elevated glucose levels
is restored by PKC inhibition, while infusion of free fatty acids reduces
endothelium- dependent vasodilation in animal models and humans in
vivo [115-117].

Therapeutic Implications and Future Perspectives

An effective inhibition of inflammatory pathways can restore
glycaemic control and prevent diabetic vascular complications [118].
Such anti-inflammatory interventions blocking IL-1p are likely to
improve glycaemic status of in type 2 diabetic patients according
to various studies [118-121]. Other approaches aiming to blockage
of NF-kB, have similar effects on glycaemic status [122-126]. In
the same context, medications with pleiotropic actions and anti-
inflammatory effects, such as rosiglitazone and atorvastatin, could
delay diabetic vascular dysfunction [127,128]. Moreover, restoration
of NO and mitochondrial superoxide levels as well as restriction of
ROS generation and oxidative stress could have beneficial effects on
endothelial function [129]. Similarly, the inhibition of PKC on healthy
subjects seem to rescue normal vessel relaxation despite prevalence of
hyperglycemia [130,131].

Another promising approach is the modulation of cellular regulatory
systems, including microRNAs and other genes. Overexpression of
miR-146a in rat aorta has been correlated with lower NF-«B levels and
suppression of inflammation and senescence, according to preliminary
evidence [132]. In general, bioenergetics (glycolysis, mitochondrial
oxidative phosphorylation, oxidative stress) regulate cell cycle, survival,
proliferation, differentiation and death [133-135]. Any intervention

Table 2. Therapeutic approach of carotid disease in diabetic patients

Senolytic factors (Death of

SGLT-2 inhibitors
senescent cells)

GLP-1 analogues

Anti-inflammatory factors
(Cascades suppression-
increased NO bioavailability)

Atorvastatin (pleiotropic

benefits) Kanacinuma (I1-1f Inhibitors)

Modulators of regulatory
pathways (Inhibition of
senescence and inflammation)

miRNAs inhibitors or

Resveratrol (Sirt1 activator) activators

Modification of risk factors
(Lifestyle changes preventing
metabolic syndrome)

Caloric (fat and sugar)

Exercise e
restriction
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on them can alter cell fate. Finally, as insulin resistance and free
fatty acid excess are primary therapeutical targets, drugs improving
insulin sensitivity, such as metformin and thiazolidinediones,
enhance endothelium-dependent vasodilation [134-139] through
phosphatidylinositol-3 kinase pathway, and seem to have anti-
senescent effects [55-57,115-117]. Consistently, findings from several
studies suggest that incretin treatment with GLP1 (glucagon-like
peptide-1) analogues or DPP4 (dipeptidyl peptidase 4) inhibitors as
well as with SGLT2 (sodium-glucose transport protein 2) inhibitors
delays the evolution of atheromatous disease in diabetic patients
through specific anti-inflammatory pathways [136-139]. There is
still much to learn concerning pathogenesis of vascular disease in
diabetes mellitus. The emersion of the field of senescence has offered
a new perspective in the elucidation of pathogenic pathways and the
development of innovative methods for prevention as well as for the
diagnosis and treatment of diabetic vascular complications (Table 2).

In conclusion, carotid disease is a significant vascular complication
occurring in diabetic patients. Development of atheromatous plaques
and exacerbation of arterial stiffness are precipitated by metabolic
disorders present in diabetes mellitus. A number of intracellular
pathways seem to be implicated in the development of carotid disease.
Underlying mechanisms involve chronic inflammation and cellular
senescence that affect endothelial and smooth muscle cells [140].
In this review, we have demonstrated that chronic hyperglycaemia
is the primary stress stimulus that alters cell metabolism and
regulatory pathways that lead to vascular dysfunction and arterial
stiffening, while free fatty acid accumulation and insulin resistance
have a strong atherogenic potential. Thus, efficient glycemic control
and antisenescent medications constitute promising therapeutic
approaches [136-141].

Highlights

o Carotid atheromatous disease is a major clinical issue among
diabetic patients.

o Diabetic milieu promotes oxidative stress, inflammation
and subsequent cellular senescence leading to endothelial
dysfunction.

o Inflammation and diabetes are reciprocally related.

o The senescent phenotype occurring in diabetes is regulated by
microRNAs and other cellular systems.

e Antidiabetic medications with anti-senescent effects seem to
delay the evolution of atheromatous disease in diabetic patients.

DPP-4 inhibitors Metformin Glyburide
Rosiglitasone (pleiotropic NF-xB inhibitors Salsalates
benefits)
Tetrahydro-biopterin
Smoking cessation
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