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Introduction
The mechanisms underlying the development of complications 

associated with cardiac surgery are multifactorial and have been 
related to inflammation and oxidative stress, classically measured 
in the blood or plasma of patients. This is important since cardiac 
surgery alters the integrity of the pericardial membrane and causes 
significant alterations in the pericardial fluid (PF) composition. This 
can potentially have adverse effects on the thin-walled atria leading 
to postoperative atrial fibrillation (POAF). After cardiac surgery, the 
pericardium remains open, and chest drains are routinely placed to 
prevent fluid accumulation around the heart. It have been described 
that the concentration and trajectory of blood proinflammatory 
factors increased in the PF after cardiac surgery over time [1]. Kramer 
et al. demonstrated an increase in the neutrophil infiltration in PF 
after 4 and 48 h postcardiac surgery over PF levels at time 0. Lipid 
peroxidation products of arachidonic acid–derived isoprostane 8-iso-
prostaglandin F2-α  and its stereoisomer 8-iso-15-prostaglandin F2α  
(F2 isoprostanes) were elevated in PF after 4 and 12 h following surgery 
and returned to PCF levels at time 0 after 24 to 48 h. Such increase 
of the levels of these pathological stimulants coupled with underlying 
atrial myocardial pathology can amplify the direct myocardial insult 
of a cardiac operation and may potentially contribute to the risk for 
postoperative AF [2]. As an opposite mechanism, it is also suggested 
that the elimination of the FP by pericardial drainage would reduce 
the pro-inflammatory injury. However, there is clinical evidence that 
increases complications and POAF occurrence [3]. Therefore, current 
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evidence of how the composition of PF influences POAF and its change 
during surgery is inconsistent and requires further study.

Post-operative atrial fibrillation pathophysiology

Postoperative AF (POAF) frequently occurs as a complication of 
cardiac surgery with extracorporeal circulation, associated with an 
increase hospital stay, medical costs and overall mortality [4]. This 
arrhythmia has a high incidence, between 27 and 40%, despite the 
optimization in anesthetic protocols, surgical techniques, medical 
treatment and the wide use of antiarrhythmics such as beta-blockers 
and amiodarone [5]. Therefore, due to the suboptimal efficacy of 
perioperative pharmacological treatment, the search for new markers 
and pharmacological targets becomes necessary. Although the 
exact pathophysiology of POAF remains unclear, it is multifactorial 
in its origin. Patient related factors known to contribute include 
atrial dilatation: age-related fibrosis, cardiac structural damage, 
hypertension, and other comorbid conditions [6,7] The concept of 
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(structural) predisposition for AF seems to be true for vulnerability of 
certain patients to AF after cardiac surgery. The electrophysiological 
substrate may be pre-existing or may develop because of heterogeneity 
of refractoriness after surgery [8]. Furthermore, the role of ectopic 
beats from the pulmonary veins in the development of POAF, as in 
nonsurgical patients, is yet to be delineated [9]. Several factors related 
to the surgical procedure also potentially contribute to the development 
of AF. These include operative trauma from surgical dissection and 
manipulation, pericardial lesions (pericarditis), atrial dilatation (caused 
by left ventricular dysfunction and intraoperative volume overload), 
perioperative use of catecholamines, parasympathetic activation, and 
electrolyte imbalances [7,10,11]. Current cardioplegia techniques and 
inadequate atrial cooling may be responsible for atrial ischemia. This 
has led some to postulate that ischemic injury and subsequent oxidative 
stress on reperfusion are potential triggers for POAF [12].

ROS generation is appreciated to occur during ischemia despite 
the low oxygen tension, from a likely mitochondria source, and 
ROS-induced ROS release may amplify its signal. The burst of ROS 
seen during reperfusion may originate from a different cellular 
source than during ischemia and is not yet fully identified [13,14]. 
This oxidative burst could cause and determine, in part, electrical 
remodeling processes that would trigger greater re-entry activity and, 
therefore, greater susceptibility to developing AF [15]. Regarding the 
inflammation, in atrial tissue from AF patients with valvular heart 
disease, there were significant positive correlations among NF- κB 
activity, serum TNF-α and IL-6 levels, and collagen volume fraction 
[16]. Serum levels of the fibro-inflammatory biomarkers MMP-9, type 
III procollagen, and hs-CRP, were greater in persistent-AF patients than 
in SR controls, and positively correlated with echocardiographic left 
atrial volume, an index of atrial remodeling [17,18]. It is important to 
distinguish between the contribution of inflammatory cells that migrate 
due to the phenomenon of surgical injury vs. The generation of local 
inflammation in the atrial tissue [19].

Participation of oxidative stress in the mechanisms inducing 
POAF

The technical procedure applied in cardiac surgeries implies an 
injury against the myocardial tissue, fundamentally derived from the 
changes of perfusion, and therefore, oxygenation, giving rise in this way 
to the formation of reactive oxygen species (ROS). Several mechanisms 
such as mitochondrial respiration and neutrophils activation generate 
ROS [14,20]. The production of free radicals in the early phase of 
reperfusion, combined with the decrease in antioxidant defences 
induced by ischemia reperfusion (IR), makes the myocardial tissue 
extremely vulnerable to oxidative damage. Among these, the superoxide 
anion (O2-), the hydroxyl radical (OH-) and the peroxynitrite (NOO-
) are key species underlying the mechanism of damage in different 
experimental models, as well as in individuals subjected to post-
infarction thrombolysis and stroke [21,22], to percutaneous angioplasty 
[23,24] or to cardiothoracic surgery [25,26]. As the cell membranes 
are composed mainly of phospholipids and proteins, alterations in 
membrane proteins by these ROS are important factors in the evolution 
of atrial tissue damage by IR. In the case of lipids, lipoperoxidation and 
the loss of membrane integrity trigger drop ATP levels and cytosolic 
calcium overload, which lead to cell death [27]. In addition, ROS act 
in the form of mediators or messengers, triggering intracellular signals. 
Thus, transcriptional factors, such as NF-κB, can be activated by ROS, 
which in turn activates the expression of pro-inflammatory genes 
[28,29]. Once the inflammatory process is initiated, transmigration and 
activation of the leukocytes takes place, which contributes to enhance 

local oxidative stress. The release of mediators such as cytokines, 
chemokines and adhesion molecules, all of which exacerbate the tissue 
damage, even areas of necrosis of the myocardial fiber can be generated 
[30,31]. The next step, the repair involves the risk of collagen deposition 
in the extracellular matrix, a process of interstitial fibrosis that would 
affect the functional properties, both electrical and mechanical, of the 
myocardium. Thus, in vitro studies, increase ROS concentration have 
shown affect the contractile function of cardiomyocytes associated 
with calcium overload and major sensitivity of myofilaments, as a 
arrhythmogenic mechanism [32,33].

Mitochondrial function

Recent experimental evidence suggests that changes of levels of 
phosphocreatine, electron transfer chain proteins and differences in 
mitochondrial distribution further imply that mitochondria play a role 
in AF [34]. Mitochondrial dysfunction leading to mitochondrial ROS 
production is implicated in ryanodine receptor oxidation facilitating 
Ca2+ leak and AF development [35,36]. Also, an interesting ex vivo 
study using atrial tissue from patients with and without AF showed 
that inward calcium L-type channels remodeling contributes to 
mitochondrial oxidative stress and increased expression of oxidative 
markers and adhesion molecules while antioxidants and inhibition 
of NF- B attenuate these changes [37,38]. Myeloperoxidase (MPO), 
an enzyme released from activated polymorphonuclear neutrophils 
has been linked to atrial fibrosis and remodeling [39]. MPO catalyzes 
the generation of reactive species like hypochlorous acid which affect 
intracellular signaling cascades in various cells and advance activation 
of pro-metaloproteinases and deposition of atrial collagen resulting 
in atrial arrhythmias. In an experimental setting MPO-deficient mice 
or rabbits were protected from AF [40,41]. In the same study, humans 
with AF had higher plasma concentrations of MPO and a larger MPO 
burden in right atrial tissue compared to control subjects. Furthermore, 
a recent study examining right atrial tissues from patients undergoing 
cardiac surgery indicated that monoamine oxidase represents an 
important source of ROS in human myocardium associated with 
POAF along with glutathione peroxidase [42]. However, it is currently 
unknown whether the mechanisms of mitochondrial dysfunction and 
eventual calcium overload would have a relevant pathogenic role in the 
development of POAF.

Inflammation and POAF

There is consistent evidence to support the influence of a surgery-
related acute inflammation on the pathogenesis of POAF. This is 
largely based on association between levels and activity of white blood 
cells and incidence of POAF. Patients who have higher postoperative 
leukocytes count are significantly more likely to develop POAF [43-46] 
and patients developing POAF tend to have greater degree of monocyte 
activation as seen by higher expression of CD11b [47,48]. Moreover, 
the elevated pre and postoperative neutrophils/lymphocytes ratio in 
patients undergoing coronary bypass graft surgery can be associated 
with an increased incidence of POAF [49,50]. Exactly how these blood 
components can trigger POAF is not known. Previous work using animal 
models has shown that when activated neutrophils bind to cardiac 
myocytes they can cause changes in myocyte electrical activity that 
could be arrhythmogenic [51,52]. Cardiac surgery can induce a systemic 
inflammatory state (systemic inflammatory response syndrome, SIRS), 
whose cellular mechanisms of generation include the participation of 
ROS [45,53]. This systemic response is associated with the activation 
of cytoplasmic transcription factors such as NF-κB, which is key in the 
regulation of the inflammatory, immune, proliferative and apoptotic 
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response [45,54]. In the case of NF-κB, the ROS, especially H2O2, would 
act at least at two levels: 1) oxidation of key kinases in the activation of 
IκB Kinase which activates the NF-κB [55,56] and, 2) Modulation of the 
transport of this factor from the cytoplasm to the nucleus [45,57,58]. 
Systemic inflammatory response syndrome has a mild modality, but 
on the occasion of prolonged surgeries or exaggerated elevation of 
serum cytokines, especially IL-6, it can progress to a severe systemic 
inflammatory state, with lethal consequences [3,59] and it is likely that 
oxidative stress determines this difference. Markers of oxidative stress 
and inflammation are usually very ubiquitous in cardiac IR injury, 
therefore other markers that increase the specificity of the diagnosis 
in this type of arrythmias are clinically needed. The contribution of 
oxidative stress and inflammation are shown in Figure 1.

mi-RNA and cardiovascular pathology

MicroRNAs (miRNA) are a class of small non-coding RNA (20-25 
nucleotides) that participate in gene regulation. In recent years, miRNAs 
have emerged as a key epigenetic mechanism in the development and 
functionality of the cardiovascular system. These molecular species 
regulate basic functions in virtually all cell types and therefore are 
directly associated with the pathophysiology of a large number of 
cardiovascular diseases [60,61]. Since its relatively recent discovery in 
extracellular fluids, miRNAs have been studied as potential biomarkers 
of several diseases. There are numerous studies that propose miRNAs 
as circulating biomarkers of different cardiovascular pathologies 
(myocardial infarction, coronary heart disease or heart failure, among 
others), even with physicochemical and biochemical properties 
superior to the conventional protein indicators currently used in 
clinical practice. They can be isolated from a variety of samples such as 
cell-conditioned media, plasma, serum, and other bodily fluids using 
a range of different methods such as sequential ultracentrifugation, 
density gradient separation, ultrafiltration, and commercial kits [62]. 
Currently, cardiovascular risk assessment is based exclusively on 
established classical risk factors such as hypertension, dyslipidemia, 
diabetes or smoking. Unfortunately, these traditional risk factors do 
not fully explain the risk of a cardiovascular event. Most of the events 
occur in patients with a low or intermediate risk that present a reduced 
number of classic cardiovascular risk factors. On the contrary, a large 
part of the individuals classified according to these factors as high risk 

do not experience any cardiovascular episode; not even in the long 
term. Thus, there is a clear clinical interest in the development of new 
non-invasive and easily accessible biomarkers that significantly improve 
the predictive capacity of the algorithms developed to date, beyond the 
traditional risk factors [63].

mi-RNA and atrial fibrillation

The role of miRNA in cardiac arrhythmogenesis is in growing study 
in clinical and basic models [64]. miRNA targeting pathways associated 
with the regulation of cardiomyocyte metabolism (miR-208a and miR-
223) may alter the provision of energy substrate required to maintain 
AF [65], whereas other miRNAs are thought to play a central role in 
changes associated with structural (miR-133, miR-590, miR-29b, miR-
208, miR-638 and miR-150) and electrical remodeling of the cardiac 
tissue (miR-328, miR-1 and miR-26) [66]. Most of the studies to date 
examine miRNA expression in right or left atrial tissue, however, there 
is scarce evidence on the surrounding circulating miRNA in human AF 
[67-69]. Furthermore, current studies address the circulating miRNA 
signature in long-standing and paroxysmal AF and do not examine the 
role of miRNA in the new onset post-operative form of this arrhythmia. 
MiRNAs involved in cardiac electrical remodelling are miR-1, miR-26, 
miR-208a, miR-328 and miR-499. Their target genes are encoding ion 
channels, connexins or proteins involved in calcium signaling resulting 
in conduction slowing or shortening of the action potential duration, 
which are hallmarks of AF pathophysiology. In addition, mi-RNAs 
involved in cardiac structural remodelling are miR-21, miR- 26, miR-
29b, miR-30, miR-133 and miR-590. These miRNAs regulate genes 
encoding proteins that are involved in extracellular matrix turnover 
and pro- or anti-fibrotic signaling cascades leading to atrial fibrosis 
as the anatomical substrate for re-entry. Several options to agonize or 
antagonize miRNA effects were developed and successfully evaluated 
in vivo in AF-related animal models [68,70,71]. Overexpression of a 
miRNA that is downregulated in disease can be achieved by miRNA 
mimics. Mimics are synthetic double- stranded RNAs that are 
incorporated and processed by the cell-like endogenous miRNAs and 
therefore ‘mimic’ their effects [72]. However, mimics are not tissue-or 
cell-type specific and can therefore create undesirable off target effects. 
This can be avoided by using cardiotropic adenovirus-mediated miRNA 
transfer that has been shown for the treatment of heart failure in mice 
[73,74] and cardiac hypertrophy in rats [75,76]. For antagonizing a 
pathological miRNA upregulation, several knockdown approaches are 
available including anti-miRNA oligonucleotides (antagomiRs) [77] or 
locked nucleic acid, [78] miRNA sponges, erasers or masks. AntagomiRs 
are synthetic oligonucleotides with miRNA complementary sequences 
that bind to endogenous miRNAs and thus, competitively inhibit 
them to bind to their target genes. MiRNA sponges [79] and erasers 
[77] are sequences of multiple miRNA sequences incorporated into 
a vector (e.g. a (cardiotropic) virus). While sponges contain only the 
seed sequence and might therefore inhibit various miRNAs, erasers 
are complementary to specific miRNAs. MiR masks, however, are 
single-stranded oligonucleotides that are complementary to a miRNA 
target sequence and can therefore specifically block single miRNA–
mRNA interactions [80,81]. All potential therapeutic interventions are 
currently based on an intramuscular or systemic application of these 
agents in vivo. In summary, progress in miRNA research has opened 
a window for establishing a new potential therapeutic intervention in 
the context of translational medicine. The future will show whether 
mi-RNAs can help to close the translational gap between underlying 
causes and specific treatment, which is currently thought to be one 
major problem in AF disease management. Also, the stability and the 
detection in biological fluids, such as PF, can increase the specificity of 

Figure 1. Proposed hypothesis for the role of oxidative stress and inflammation in the 
pathophysiology of postoperative atrial fibrillation in patients scheduled for cardiac surgery 
with cardiopulmonary bypass. ROS, reactive oxygen species; MPTP, mitochondrial 
permeability transition pore; POAF, postoperative atrial fibrillation
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other markers such as the classical oxidative stress and inflammation, 
generating a new type of diagnostic cluster in POAF.

Conclusion
Despite the evidence of oxidative stress, inflammation  and 

apoptosis occurrence in the atrial tissue and plasma of POAF 
patients post cardiac surgery with extracorporeal circulation, miRNA 
expression profiling results revealed a clear dissociation in expression 
levels between the atrial appendage and blood circulation. Whereas, 
an increase in some miRNA candidates such as higher levels of 
miR-1 and a decreased in miR- 133A that specifically negatively 
correlated with apoptosis was observed in the atrial tissue; however, 
the miR plasma equivalents were similar to their pre-CABG levels 
bringing into question the reliability of circulating miRs to serve as 
potential biomarkers for POAF in cardiac patients [82]. Nevertheless, 
an improved understanding of miR function would facilitate the 
design of novel strategies for cardio-protection against atrial tissue 
remodeling in POAF patients.

Finally, the use and validation of new markers such as miRNA 
in cardiac tissue and different fluids is important since their different 
expression profiles could bring us in a non-invasive way to what is 
induced by ischemia-reperfusion in myocardial tissue, its relationship 
with atrial remodeling and probable pharmacological targets that can 
be modelled.
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