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Introduction
The cMYB gene belongs to a family of proto-oncogenes that 

function as strong transcriptional activators. Thus far, of the MYB 
family of genes, only cMYB has validated as a bona fide oncogene in 
in vitro studies and is implicated in leukemia  [1], colon [2], pancreatic 
[3], head and neck [4] and breast [5,6] cancers. Data show that cMYB 
is highly expressed in receptor positive luminal breast cancers, and 
the gene is currently being considered as a therapeutic target in breast 
cancers via the use of low molecular weight molecules and RNAi 
approaches [7]. Although their targets differ, all of the MYB family 
genes target genes involved in proliferation, differentiation, apoptosis 
and cell cycle regulation in different tissues.

Substantially more is known about cMYB compared to other MYB 
family genes.  Studies show that cMYB can target oncogenes including 
MYC and KIT, suggesting that co-operative processes between the 
different genes may be key to driving oncogenesis [8]. Also related to 
its involvement in tumorigenesis, cMYB has been shown to regulate 
CCNB1, COX2 and MIM1, and BCL2 for a possible role in inhibition 
of apoptosis [6,9].  Data also show that cMYB targets cyclin b1, CCNB1, 
CCNA1 and CCNE1 [5,10] cell cycle genes, and GATA3, PVRL and 
CEBPB in breast [5]. Considered together, these data show cMYB 
associating with genes involved in tumor progression. The aim of this 
study is to further characterize cMYB in receptor positive luminal 
breast cancers, with the added intent of identifying genes that might 
eventually prove clinically useful. We retrieved and analyzed an ESR1 
knock-down dataset and a cMYB knock-down dataset and identified 
genes common to both datasets. cMYB was substantially silenced in 
both datasets. From our analyses, a list of ten candidate genes were 
selected, one of which had been previously identified as a cMYB target.  
Of the ten genes, four genes validated following experimental analyses 
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of the MCF7 model. The genes included LONRF2, DOK7, MSX2 and 
KCNMB4. LONRF2 is a LON peptidase N-terminal domain and the 
RING finger domain gene known to be involved in protein-protein 
and protein-DNA binding interactions associated with a number of 
different signaling events [11]. DOK7 (downstream of tyrosine kinase 
7; docking 7) gene is essential to neuromuscular synaptogenesis and 
thought to activate muscle-specific receptor kinase [12]. MSX2 is a 
muscle homeobox gene related to regulation of bone development and 
regulation of signaling events between survival and apoptosis [13]. 
The KCNMB4 (Potassium Calcium-Activated Channel Subfamily M 
Regulatory Beta Subunit 4) gene is fundamental to the control of smooth 
muscle tone and neuronal excitability [14]. At this point, it’s unclear as 
to the relationship between the LONRF2, DOK7, MSX2 and KCNMB4 
and cMYB. The four genes appear to be affected by conditions that 
silence cMYB, and further validation of their concurrent expression 
with cMYB should help in understanding the relationship between the 
signaling mechanisms. 

Methods
Cell lines

The MCF7 (luminal, receptor positive) and MDA MB231 (triple 
negative; receptor negative) cell lines were utilized in this study.  The 
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cell lines were purchased from Atcc.org (Manassas, VA, USA) and were 
maintained in Dulbecco’s Modified Eagle Minimum essential media 
(DMEM) supplemented with 1% penicillin and 10 % serum in a 37ºC 
incubator with 5% CO2 as suggested by the supplier. 

Microarray datasets obtained from Gene Expression 
Omnibus and data analyses 

Unless noted otherwise, DNA microarray datasets used in this 
study were retrieved from the GEO as Affymetrix U133 plus 2 Cel 
Intensity files (CEL).  Before uploading and utilizing the gene-chip 
datasets, we assessed the quality control metrics for each microarray in 
order to determine the quality of the hybridizations. The CEL files were 
uploaded into the National Cancer Institutes’ mAdb [15] web-based 
bioinformatics portal, normalized and the differentially expressed 
genes were identified following T-test and Wilcoxon group analyses 
and statistical filtering based on p-values of <0.05, and at least a 2-fold 
difference. Euclidean Hierarchical clustering (HC) was also performed 
using mAdb. The Maire patient sample dataset contained 101 clinical 
patient samples representing luminal A, luminal B and TNBC breast 
tissues (GSE65194) [16]. 

The estrogen-receptor knockdown dataset was GSM678802 [17]. 
The dataset was generated by siRNA mediated silencing of the estrogen 
receptor in MCF7 breast cancer cells. The cMYB knockdown dataset 
was GSE21371 [18].  cMYB was silenced following stable RNAi 
knockdown of endogenous cMYB. Agilent Human 4×44 K Custom 
Oligo microarrays (with Cy3/Cy5 channel detection) were utilized 
for assessment of the differentially expressed genes. We utilized the 
GEO2R software available via Gene Expression Omnibus to query 
the datasets to identify genes affected by cMYB knockdown [19]. As 
a default condition, the top 250 differentially expressed genes were 
identified based on statistical significance values  <0.003. The genes 
identified following analyses of the Agilent custom microarray were 
compared to those identified using the Affymetrix microarray. The 
corresponding Affymetrix probe-set IDs were 204798_at for cMYB, 
240633_at for DOK7, 225996_at for LONRF2 .  205555_s_at for MSX2 
and 222857_s_at for the KCNMB4 gene.

RNA extraction, primer generation and PCR analyses

RNA was extracted using the TrizolTM reagent (Invitrogen; Carlsbad 
CA, USA) as suggested by the manufacturer. cDNA was generated for 
MCF7 and MDA MB231, using the iScriptTM  kit (BioRad; Hercules CA, 
USA) as suggested by the supplier.

The primer3 program [20] was used to identify the primer 
sequences for each of the target genes (Table 1). The corresponding 
gene sequences were obtained from Affymetrix NetAffx (http://www.
affymetrix.com/estore/analysis/index.affx) based on the Affymetrix 
probe-set ID. For each gene, the resulting amplicon sizes ranged from 
200 – 300 nucleotides. The PCR primer sequences were synthesized by 
IDTDNA.com (Coralville Iowa, USA).

PCRs were performed using the AmpliTaq GoldTM PCR mixture 
as suggested by the supplier (Life Technologies, Carlsbad CA, USA). 
The PCR was performed at 95 degrees for 5minutes, then 27 cycles of 
the following: thirty seconds at 95 degrees, thirty seconds at 58 degrees 
followed by 30 seconds at 78 degrees. The amplified products were 
analyzed on a 2% agarose gel and electrophoresed at 95volts for 30 
minutes. 

Results
Identification of ESR1 and cMYB knockdown in MCF7 
dataset

The goal of the study was to further characterize cMYB and identify 
genes that appear to be reliability associated with cMYB expression. 
Previous data show that ESR1 can regulate cMYB gene expression 
in breast cancer [21]. Studies show that when ESR1 is silenced in 
MCF7 luminal cells, then cMYB is also affected [22]. Because we were 
interested in identifying cMYB-related genes, and cMYB is ‘affected’ 
in the ESR1 knockdown, our thought was that analyses of the ESR1 
dataset would allow for detection of genes associated with cMYB. 

We identified a GEO dataset in which ESR1 was silenced in MCF7 
and cMYB downregulated. The mAdb web-based bioinformatics 
resource was utilized to identify genes differentially expressed in 
the control compared to the ESR1 knockdown.  As comparison, we 
identified a MCF7 cMYB knockdown dataset, processed the genes to 
identify a list of differentially genes, and compared the two datasets in 
search for genes concordantly differentially expressed between the two 
knockdown studies. Ten genes were found to be differentially expressed 
in both datasets (Figure 1). All ten genes demonstrate a similar pattern 
of gene expression in both knockdown datasets. As exception, ESR1 
is dramatically silenced in the ESR1 knockdown, but only marginally 
affected in the cMYB knockdown conditions. 

Thus far, our experiments only compare the gene expression 
patterns. However, we have performed preliminary bioinformatics 
analyses to determine cMYB’s relationship to our candidate genes. 
Genecards and Qiagen promoter analyses [23] suggest that cMYB 
binds the TNFAIP2 gene promoter. Moreover, based on TF2DNA [24] 
analyses and Genecards, MYBL1 is suspected of binding the DOK7 
gene promoter. MYBL1 and cMYB belong to the same family of proto-
oncogenes, and function via reciprocal regulation [5]. It could be that 
cMYB regulates MYBL1, which then regulates DOK7 in luminal breast 
samples. The MYBL1 gene was identified in both the ESR1 and cMYB 
knockdown studies but was not selected (as differentially expressed) 
because it did not meet the statistical significance cutoff of >2.0-fold 
difference in the ESR1 knockdown studies.  Nonetheless, the MYBL1 
gene might still be functioning in the samples. 

The ten genes identified above were examined via PCR using 
the MCF7 luminal cell line. As comparison, the gene expression 
levels in MDA MB231 triple negative breast cancer (TNBC) cell line 

GENES LEFT PRIMER RIGHT PRIMER AMPLICON
      (base Pairs)

DOK7 CMGCTCCIGTCTGAACCIC CC GACAGTGAAGGGACAAAG 209
KCNM B4 ATGATGTGCITCTGCATCGC CO TG CCGATGAGTACAGCIT 217
LONRF2 TGCTAGIGGAGAGIGGTGTC A AGGCCAGATGAGTGACCTGT 215

MSX2 AAAGACTGCAGGAGGC AGAA CAGGG1TAGCAGAGCAGGAG 317
cMYB C1TGITTGGGAGACTCTGCA TGCAAACACAGGATCCATGC 227

GAPDH TCCCTGAGCTGAACGGGAAG GGAGGAGTGGGTGTCGCTGT 218

Table 1. Primer Sets for the genes of interest
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were determined. Similar to cMYB, the LONRF2, DOK7, MSX2 and 
KCNMB4 genes consistently demonstrated a differential pattern of 
transcript expression. Transcript levels were highest in the MCF7 
luminal sample compared to the MDA MB231 TNBC sample. As a 
result, these four genes are chosen as candidates that we suggest are 
possibly involved in signaling events consistent with cMYB (Figure 
2). Cluster analyses demonstrate a gene expression pattern similar to 
that observed via PCR, in that transcript levels of the candidate genes 
and cMYB are higher in luminal compared to receptor negative TNBC 
patient samples (Figure 3). Approximately 76% of the luminal patient 
samples cluster together and 64% of the TNBC samples cluster together 
based on analyses of cMYB, LONRF2, DOK7, MSX2 and KCNMB4 
genes. These data validate concordant gene expression between our 
candidate genes and cMYB. 

Discussion
The cMYB gene is a strong transcriptional activator and a known 

oncogene. It is being considered as a therapeutic target for receptor-
positive patients, hence it is the focus of  numerous studies aimed at 
characterizing the gene. To date many of cMYB’s downstream targets 
have been identified.  cMYB targets are involved in events and pathways 
key to differentiation and tumor progression [25] implicating its 

involvement in these signaling processes. The experiments outlined 
here were performed with the goal of identifying novel genes involved 
in cMYB signaling mechanisms. Our candidate genes are differentially 
expressed following ESR1/cMYB silencing and in a separate cMYB 
knockdown study. We reasoned that both datasets, particularly the 
cMYB knockdown study, should lead to identification of cMYB 
associated targets and interacting genes, and comparative analyses 
of both datasets should result in a somewhat reliable list of candidate 
genes. 

Many of the genes identified in the ESR1 knockdown are likely 
driven by events associated with ESR1 targeting. So, the role of ESR1 
in the events related to expression of MSX2, LONRF2, DOK7 and 
KCNMB4 is unclear. Data appear to suggest that ESR1 has a greater effect 
on cMYB, than cMYB has on ESR1 receptor. ESR1 binds to domain 1 
of cMYB regulating elongation of the gene during transcription [26]. 
When ESR1 is knocked down there is subtantial silencing of cMYB, but 
comparatively when cMYB is knocked down then ESR1 is only slightly 
affected.  Even when ESR1 is marginally affected then MSX2, LONRF2, 
DOK7 and KCNMB4 genes are still silenced with cMYB knockdown. It 
would appear that the effects on MSX2, LONRF2, DOK7 and KCNMB4 
are more closely related to cMYB than ESR1.  

Figure 1. Genes common between the ESR1 and cMYB knockdown studies. The genes differentially expressed after cMYB knockdown were determined using GEO2R and the top 250 
genes compared to genes identified as differentially expressed following ESR1 knockdown (i.e., p-value <0.05; >2.0). kd= knockdown study. Asterisk are genes that validate via PCR 
analyses

Figure 2. PCR analyses of genes common between ESR1 and cMYB knockdown datasets. MCF7 (luminal) compared to MDA MB231 (TNBC) cell lines

Figure 3. Hierarchical clustering of luminal compared to TNBC patient clinical samples against LONRF2, MYB, KCNMB4, MSX2 and DOK7 genes. The luminal A/B patient samples are 
represented by yellow and the TNBC patient samples are represented by the red clustering across the top bars
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As for the relationships of our four genes to cMYB, TF2DNA 
analyses of MSX2 suggest regulation of cMYB.  MSX2 is a homeobox 
gene. As far as we are aware, gene expression has not been assessed in 
MCF7 cell lines, nor has levels been assessed with respect to cMYB.  
MSX2 has been assessed in MDA MB231 cells. MDA MB231 cells 
are a highly aggressive breast cancer subtype. Lanigen, et al. [27] 
showed that ectopic expression of MSX2 in MDA MB231 cells lead to 
downregulation of survivin gene and induced apoptosis. The authors 
did not assess cMYB expression but did substantiate low levels of MSX2 
in MDA MB231 which also express low endogenous levels of cMYB.  

The DOK7 gene functions in synaptogenesis, mostly described 
in processes associated with neuronal cell types with limited studies 
relating the gene to cancers.  Studies of DOK7 show the gene is regulated 
by methylation with reduced levels in lung [28] and breast [29], with 
reduced expression associated with poor prognosis. The gene does not 
appear to be directly related to cMYB, however, TF2DNA analyses 
suggest DOK7 can be regulated by MYBL1. MYBL1 is a member of the 
cMYB family and is expressed in some luminal breast including MCF7.  
It could be that DOK7 association in MCF7 is via regulation by MYBL1.  
DOK7 is not detected in MDA MB231, however MYBL1 is expressed in 
the cell lines [30], suggesting a possible different method of regulation 
in MDA MB231 cells.

The LONRF2 gene is identified as being one of a list of coding genes 
differentially expressed in both colon and breast cancers [31], with only 
one citation related to breast and overall limited analyses. As far as we 
are aware the KCNMB4 gene has not been described in either cancers 
or breast.

Conclusion
This study is intended to be a preliminary analysis aimed at 

identifying genes related to the cMYB gene. We have identified four 
genes that appear to be related to responses either directly or indirectly 
associated with cMYB expression in MCF7 and luminal patient 
samples. In addition to identifying the candidate genes, our laboratory 
is interested in understanding the role of these genes in breast cancers.
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