Biological activity exerted by omega-3 fatty acids on body mass index, glucose, total cholesterol and blood pressure in obese children

Elodia García-Cervera1, Lauro Figueroa-Valverde2*, Eduardo Pool Gómez3, Marcela Rosas-Nexticapa4, Hau-Heredia Lenin5, Mateu Armand Virginia6, Parra-Galindo Perla7 and Cauich-Carrillo Regina1

1Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P.24039 Campeche Cam., México
2Facultad de Nutrición, Universidad Veracruzana. Médicos y Odontólogos s/n, 91010, Xalapa, Veracruz, México

Abstract

Background: Obesity is risk factor to development cardiovascular diseases. There are several studies which indicate that fatty acids can exert changes in body fat in children. However, the results found relatively are few and have generally been conducted over short time periods with small sample sizes, making it difficult to draw definitive conclusions.

Objective: In this study the effect induced by omega-3 fatty acids on some biological parameters such as glucose, total cholesterol and body mass index levels in obese children were evaluated.

Methods: A dietary intake of gummies with omega-3 fatty acids at dose (100-350 mg) was administered to obese children. Then, glucose, total cholesterol and body mass index levels were determine using an apparatus (accutrend pluss) and enzyme-immunoassay techniques.

Results: The results showed that dietary intake of gummies with omega-3 fatty acids induces significantly changes on total cholesterol and body mass index levels in obese girls compared with obese boys.

Conclusions: All these data suggest that dietary intakes of omega-3 fatty acids could be used for the treatment of degree of obesity in obese girls. However, it is important to mention that it is also necessary to evaluate the beneficial effect of omega-3 fatty acids on other biological parameters involved in the degree of obesity as well as the possible toxicity involved in its administration.

Material and Methods

Fifth and sixth graders (n=300) in two San Francisco de Campeche Mexico schools were invited to participate in a dietary intake gummy with omega-3 fatty acids at dose of 100 to 350 mg. The parents were informed about the nature and the purpose of this study, and a consent form was signed by parents. In addition, the protocol of this research was previously approved by the ethical committee at the University Autonomous of Campeche.

Correspondence to: Lauro Figueroa-Valverde, Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P.24039 Campeche Cam., México, E-mail: lauro_1999@yahoo.com

Received: January 31, 2018; Accepted: February 28, 2018; Published: March 05, 2018
Anthropometric measures

Body mass index. Subjects were weighed without shoes. Standing height was measured without shoes to the nearest 0.5 cm with the use of a commercial stadiometer. Body mass index (BMI) was calculated by dividing weight (kg) by height squared (m^2).

Blood Parameters Measured. A fasting blood sample was obtained for determination of glucose, triglyceride and total cholesterol concentrations were determined using Accutrend Plus (Hoffmann-La Roche, Grenzach-Wyhlen, Germany) [19].

Evaluation of insulin levels. Insulin assay was performed by enzyme-immunoassay (Human Insulin ELISA kit, Sigma-Aldrich company) according to the manufacturer’s instruction [20].

Statistical analysis

The obtained values are expressed as average ± SE [21].

Results

Evaluation of Body Mass Index

Body Mass Index (BMI) differences in BMI levels for obese boys after of a dietary intake from gummies with omega-3 fatty acids at a dose of 100 mg (31.00 ± 1.2 Kg/m^2), 150 mg (30.04 ± 1.2 Kg/m^2), 200 mg (29.00 ± 1.2 Kg/m^2), 210 mg (29.29 ± 1.2 Kg/m^2), 280 (28.13 ± 1.2 Kg/m^2) and 350 mg (25.00 ± 1.7 Kg/m^2) in comparison with control (31.48 ± 1.7 Kg/m^2).

Other results indicate that an intake from gummies with omega-3 fatty acids in obese girls at different doses 100 mg (29.00 ± 1.2 Kg/m^2), 150 mg (28.50 ± 1.2 Kg/m^2), 200 mg (28.00 ± 1.2 Kg/m^2), 210 mg (28.71 ± 1.2 Kg/m^2), 280 (27.57 ± 1.2 Kg/m^2) and 350 mg (24.00 ± 1.7 Kg/m^2) exert changes on BMI levels compared with control (30.40 ± 1.8 Kg/m^2).

Determination of Glucose levels

Administration of dietary intake from gummies with omega-3 fatty acids to obese boys at dose of 100 (102.00 ± 1.7 mg/dl), 150 (110.00 ± 1.7 mg/dl), 200 (115.02 ± 1.7 mg/dl), 210 mg (98.04 ± 1.7 mg/dl), 280 mg (102.00 ± 1.3 mg/dl) and 350 mg (108.00 ± 1.4 mg/dl) was no significant differences. Also, the dietary intake with omega-3 fatty acids in obese girls at dose of 100 (98.00 ± 1.6 mg/dl), 150 (100.00 ± 1.4 mg/dl), 200 (104.02 ± 1.5 mg/dl), 210 mg (110.00 ± 1.6), 280 mg (107.00 ± 1.3) and 350 mg (102.16 ± 1.2) was no significantly changes in the glucose levels compared control conditions (100.02 ± 1.6).

Evaluation of insulin levels

The data found showed that insulin levels was not significantly difference in obese boys after of a dietary intake of gummies with omega-3 fatty acids at dose of 100 (14.00 ± 1.5 μU/L), 150 (14.40 ± 1.4 μU/L), 200 (14.60 ± 1.5 μU/L), 210 mg (14.80 ± 1.2 μU/L), 280 mg (14.88 ± 1.3 μU/L) and 350 mg (14.08 ± 1.2 μU/L) compared with conditions control (14.0800 ± 1.4 μU/L). Additionally, other results showed that dietary intake of gummies with omega-3 fatty acids in obese girls at doses of 100 (14.50 ± 1.4 μU/L), 150 (14.88 ± 1.3 μU/L), 200 (14.00 ± 1.5 μU/L), 210 mg (13.98 ± 1.1 μU/L), 280 mg (14.20 ± 1.5 μU/L) and 350 mg (14.88 ± 1.4 μU/L) was no significant differences compared with control (13.88 ± 1.5 μU/L).

Cholesterol total

The results showed significantly variations in cholesterol total levels for obese boys after of a dietary intake of gummies with omega-3 fatty acids at dose of 100 (202.00 ± 1.6 mg/dl), 150 (194 ± 1.5 mg/dl), 200 (190.00 ± 1.7 mg/dl), 210 mg (188.14 ± 1.6 mg/dl), 280 mg (172.12 ± 1.8 mg/dl) and 350 mg (152.10 ± 1.9 mg/dl) in comparison with obese boys without treatment. Other data showed in the Figure 2 indicated that dietary intake with omega-3 fatty acids in obese girls at dose of 100 (186.00 ± 1.6 mg/dl), 150 (182.00 ± 1.5 mg/dl), 200 (180.00 ± 1.7 mg/dl), 210 mg (176.00 ± 1.6 mg/dl), 280 mg (170.00 ± 1.6 mg/dl) and 350 mg (144.10 ± 1.9 mg/dl) exert changes on cholesterol total levels compared with conditions control (188.75 ± 1.5 mg/dl).

Blood pressure

On the other hand, other results from a dietary intake of gummies with omega-3 fatty acids in obese boys showed significant changes on blood pressure at dose of 100 mg (114.00 mg/dl ± 12.0), 150 mg (108.00 mg/dl ± 14.0), 200 mg (116.00 mg/dl ± 17.0) 210 mg (114.20 mg/dl ± 15.0), 280 mg (118.02 mg/dl ± 13.0) and 350 mg (110.20 mg/dl ± 14.0) with relation to control (116.00 mg/dl ± 13.0). Finally, other data showed that dietary intake with omega-3 fatty acids in obese girls at dose of 100 (106.00 ± 1.4 mg/dl), 150 (104.00 ± 1.4 mg/dl), 200 (102.00 ± 1.7 mg/dl), 210 mg (99.00 ± 1.4 mg/dl), 280 mg (102.00 ± 1.5 mg/dl) and 350 mg (102.04 ± 1.6 mg/dl) produce changes on blood pressure compared with conditions control (112.02 ± 1.4 mg/dl).

Discussion

There are some reports which indicate that obesity is a factor risks to development several cardiovascular diseases [2,3]. To reduce this clinical pathology some strategies have been used; for example, an intake dietary with high-fiber [22], fruit and vegetable [23] or use of drugs such as Orlistat, sibutrimine, rimonabant and others; however, some of these treatment may produce some adverse effects [24].

Evaluation of effect produced by omega-3 fatty acids on Body Mass Index (BMI)

In the search of some therapeutic alternative to reduce the obesity, the effect exerted by a dietary intake of gummies with omega-3 fatty acids on some parameters clinical such as body mass index glucose, cholesterol and blood pressure in an obese children population was evaluated. The results showed that effect produced by a dietary intake of gummies with omega-3 fatty acids decreased BMI levels in obese girls compared to obese boys and control (obese girls without treatment) at different doses (Figure 1); these data are supported by some studies previously reported [25], which indicate that administration of omega-3 fatty acids decreased the BMI in obese girls.

Determination of biological activity exerted by omega-3 fatty acids on Cholesterol total concentration

Analyzing the data above mentioned and other studies which suggest that intake diet of n-3 polyunsaturated fatty acids can produce changes on total cholesterol levels [26], in this study, the effect exerted by omega-3 fatty acids on total cholesterol concentration in obese children was evaluated. The results found indicated that omega-3 fatty acids significantly reduce the total cholesterol concentration in obese girls compared with obese boys and controls (Figure 2). However, it is noteworthy that some studies indicate that omega-3 fatty acids, in addition of alterations of total cholesterol also may exert changes in blood pressure levels [27].

Evaluation of effect produced by omega-3 fatty acids on Blood Pressure

In this study, the biological activity of by dietary intake of gummies with omega-3 fatty acids on blood pressure in obese children was
García-Cervera E (2018) Biological activity exerted by omega-3 fatty acids on body mass index, glucose, total cholesterol and blood pressure in obese children

Integr Obesity Diabetes, 2018 doi: 10.15761/IOD.1000199

The results showed (Figure 3) that omega-3 fatty acids decreased the blood pressure in a dependent-dose manner compared with obese boys and controls (obese children, without treatment). These data are similar to other studies that indicate that omega-3 fatty acids can induce changes in blood pressure in hypertensive patients [28]. It is important to mention that this phenomenon also may also be conditioned by changes of glucose levels such happening with biological activity induced by other substance in obese patients [29].

Evaluation of effect exerted by omega-3 fatty acids on insulin concentration

Some reports suggest that omega-3 fatty acids may induce changes on insulin levels. Analyzing this premise, in this study the effect of a dietary intake omega-3 fatty acids was evaluated in obese children. The results showed that the administration of different doses of gummies evaluated. The results showed (Figure 3) that omega-3 fatty acids decreased the blood pressure in a dependent-dose manner compared with obese boys and controls (obese children, without treatment). These data are similar to other studies that indicate that omega-3 fatty acids can induce changes in blood pressure in hypertensive patients [28]. It is important to mention that this phenomenon also may also be conditioned by changes of glucose levels such happening with biological activity induced by other substance in obese patients [29].

Determination of biological activity exerted by omega-3 fatty acids on glucose levels

Some studies indicate that intake diet of omega-3 polyunsaturated fatty acids can increase glucose levels obese and diabetic patients [30]; however, other studies indicate that omega-3 fatty acids improve glucose metabolism without have effects on obesity degree in women [31]. Therefore, in this study, the biological activity exerted by an intake diet of omega-3 polyunsaturated fatty acids on glucose levels was evaluated in obese children. The results showed (Figure 4) that intake diet of omega-3 polyunsaturated fatty acids no exerted significantly differences on glucose levels in both obese boys and girls. This phenomenon is possibly a result of the methodology and the different doses used or the complex correlation between diet and other lifestyle factors.

Evaluation of effect exerted by omega-3 fatty acids on insulin concentration

Some reports suggest that omega-3 fatty acids may induce changes on insulin levels. Analyzing this premise, in this study the effect of a dietary intake omega-3 fatty acids was evaluated in obese children. The results showed that the administration of different doses of gummies evaluated. The results showed (Figure 3) that omega-3 fatty acids decreased the blood pressure in a dependent-dose manner compared with obese boys and controls (obese children, without treatment). These data are similar to other studies that indicate that omega-3 fatty acids can induce changes in blood pressure in hypertensive patients [28]. It is important to mention that this phenomenon also may also be conditioned by changes of glucose levels such happening with biological activity induced by other substance in obese patients [29].

Determination of biological activity exerted by omega-3 fatty acids on glucose levels

Some studies indicate that intake diet of omega-3 polyunsaturated fatty acids can increase glucose levels obese and diabetic patients [30]; however, other studies indicate that omega-3 fatty acids improve glucose metabolism without have effects on obesity degree in women [31]. Therefore, in this study, the biological activity exerted by an intake diet of omega-3 polyunsaturated fatty acids on glucose levels was evaluated in obese children. The results showed (Figure 4) that intake diet of omega-3 polyunsaturated fatty acids no exerted significantly differences on glucose levels in both obese boys and girls. This phenomenon is possibly a result of the methodology and the different doses used or the complex correlation between diet and other lifestyle factors.
with omega-3 fatty acids no exert significantly changes in insulin concentration in both boys and girls; this data indicated that omega-3 fatty acids no exert activity on synthesis or release of insulin (Figure 5). These data are contrary to other reports which indicate that an intake dietary of omega 3 fatty acids enhancing insulin secretion.

Conclusions

Intake diet of omega-3 polyunsaturated fatty acids exerts effect against body mass index and cholesterol in a dose-dependent manner. However, it is important to mention that there is a possibility that high doses could increase this phenomenon.

Author Contributions

All the authors contributed to evaluation of effect exerted by omega-3 polyunsaturated fatty acids and data analysis of final manuscript.

References

28. Raffauf M, Mohammad E, Ashghi M, Farzadi L (2012) Omega-3 fatty acids improve glucose metabolism without effects on obesity values and serum visfatin levels in women with polycystic ovary syndrome. J Am Coll Nutr 31: 361-368. [Crossref]

Copyright: ©2018 García-Cervera E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Figure 5. Effect exerted by omega-3 fatty acids at dose of 100-350 mg on insulin concentration. The results showed that omega-3 fatty acids do not exert changes on insulin levels in obese children. The effects are expressed as mean ± S.E.