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Abstract
In this paper we explore the implications of two models of carcinogenesis on the incidence of cancer in extreme old age (80 years or older). Both models pose that 
cancer is the final stage of a multistage process and that the transition rates between stages slows with age. We find that in a 7-stage model, where all stages have 
monotonic transition rates, a decrease of as little as 60% in the transition rate of each stage could cause the observed decrease in cancer risk at extreme old age. If only 
the transition rate of a single stage slows, then a decrease of at least 90% is needed to explain the observed patterns of cancer incidence. Because of this, we conclude 
that it is likely that if a decrease in transition rates is indeed responsible for the decrease in cancer incidence risk at extreme old age then multiple stages are involved.

Introduction
The multistage model of carcinogenic has been a cornerstone of 

the mathematical study of cancer incidence since it was first proposed 
by Armitage et al. [1]. This model proposes that cancer is the final 
stage of an n-stage evolutionary process. The beauty of this model is 
that despite its conceptual simplicity, variations of it have been able 
to describe several patterns of cancer incidence that seem to prevail 
across time and geography [2]. Specifically, this model was created to 
explain the prevalence of a power law in cancer incidence across several 
types of cancer. However, one pattern which seems to prevail almost 
universally across cancer incidence functions is not explained by the 
simple model of Armitage et al. [1]. That is a leveling off, and in several 
cases, a decrease in extreme old age (after age 80) [3, 4].

To explain these phenomena at least two coherent theories have 
been proposed and explored: statistical under-reporting [5] and cellular 
senescence [2]. However, one recent theory which varies substantially 
from these is that the transition rates from one stage to another slow 
down with age [2]. The justification for this theory lies in the fact that 
many biological processes which are necessary for the development 
of a malignant tumor tend to slow down or lose efficiency with age 
[6]. Thus a sufficient slow down of one or more stages might cause 
a corresponding decrease in the number of new cases of cancer. In 
essence cells would become ”stuck” in precancerous stages. However, 
this fairly intuitive idea raises two questions: how many stages would 
have to be affected, and how much of a slowdown would be needed for 
each stage?

In this note we explore these questions through two models, which 
we will call ODS and NDS, each of which is a variation of a compound 
Poisson process used to model the multi-stage carcinogenesis theory. 
In the next section, we describe these models in detail. In Section 3 we 
present our study design to find biologically feasible parameter ranges, 
and in Section 4 we present and analyze our findings.

Model description
The two models explored in this paper are specific examples of a 

general model which assumes the following:

•	 cancer occurs as the final mutation of an ordered n−mutation 

process, 

•	 mutations are independent events, 

•	 transitioning to the ith mutation is a time-in homogenious 
Poisson process with intensity 
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where t is time, T ≥ 90, λi is the initial transition rate for the ith mutation,

βi is the annual rate of decrease for the transition rate λi and βi < 
1/T,

The probability of developing cancer in any two susceptible cells is 
independent events. 

Using these assumptions, we construct the cumulative distribution 
function for a single cell explicitly for t ≤ T as: 
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Thus, if we have a large number of susceptible cells in a tissue, m, 
and cancer is a sufficiently rare event then the cumulative distribution 
function for a tissue approximates the following relationship:
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The special case where λi = λ > 0 and βi = β > 0 for all i, was briefly 
examined in [7]. We will denote this particular case of the general model 
as the n−decreasing stage model (NDS). One interesting property of 
the NDS is that the Taylor expansion of the corresponding probability 
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density function gives a truncation mathematically equivalent to the 
model of [2], which in turn was based on the assumption of cellular 
senescence. Thus NDS allows for an alternative biological explanation 
for the model of [2]. In this paper, we will contrast the NDS model 
with a one stage decreasing model (ODS). For ODS we assume λi = λ > 
0, and that for one particular value of j, βj > 0 and for i ≠ j that βi = 0.

 Given the above assumptions we find that for NDS the cumulative 
distribution function become,

( )21 [ ]
2( ) ,

!

n
i

n

m Exp t t
F t

n

λβλ− − +
=

and for ODS,
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From these two equations, we determine the probability density 
function of each model as: fn(t) = Fn

'(t) and fo(t) = Fo
' (t). We will use the 

probability density function as a proxy for cancer incidence, thus In(t) 
= fn(t), and Io(t) = fo(t).

Study design
For the purpose of this study, we followed the original conclusions 

of [5,1], that is, n = 7 (this is necessary to explain the 6th degree power law 
observed in several cancers, including lung cancer). We selected time 
points at years t ∈  {2.5, 7.5, 12.5, ..., 87.7, 90} (these particular values 
are the same as those used to censor actual incidence data in [6,8]) for 
a total of 19 points. For both models, we first found biologically feasible 
values of λ by setting β = 0 and deeming a value of λ feasible if the 
correlation between log(I(t)) and log(t) was at least 0.95 (noting that in 
the case that β = 0 Io(t) = In(t) = I(t)).

Once the possible range of λ was determined, we subdivided the 
range from λ = 0 to λ = Λ, with Λ being the maximum biologically 
feasible value found, into steps of size 0.001. For the ith step, we 
defined βi

min(A) to be the value of β which caused a peak at age 85 and 
βi

max(A) to be the value of beta which causes a turnaround at age 75 
for model A ∈  {ODS, NDS}. Having completed this calculation, we 
found the cumulative percentage decrease from birth to age 90 for each 
combination of λi and βi, for all i.

Analysis of parameter values
The biologically feasible combinations of parameters along with the 

cumulative slow down of transition rates are summarized in Figure 1.

Of course, a cumulative slow down in excess of 100% would not 
be biologically possible, thus we can conclude that the ODS model 
could only cause a turnaround after age 80. Since this is later then is 
typically observed [3,4,7], we conclude that the ODS is a poor model 
to explain actual cancer incidence data. However, for the NDS, we see 
that for the entire range of λ, we can find values of β which may in 
fact be biologically possible. Thus, it seems likely that if a slow downs 
of transition rates is responsible for the turnaround at old age, then 
multiple stages would have to be involved.
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Figure 1. Study Results
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