The canonical Wnt signal paradoxically regulates osteoarthritis development through the endochondral ossification process

Hiroshi Kawaguchi*

The Chief of the Spine Center, Japan Community Health Care Organization (JCHO), Tsukudo 5-1, Tokyo 162-8543, Japan

Osteoarthritis, a joint disorder characterized by cartilage degradation and osteophyte formation, is considered a major public health issue causing chronic disability worldwide with the increasing number of aging people today [1,2]. Although the social impact of this disorder has been compared to osteoporosis, [3] osteoarthritis is far behind osteoporosis in the development of disease-modifying treatments. This is mainly because little is known about the underlying molecular mechanism which can be the therapeutic target. Recent animal studies have disclosed that osteoarthritis is initiated by production of proteinases such as matrix metalloproteinases (MMPs) and aggrecanases that sever type II collagen (COL2) and proteoglycan, the principal matrix of articular cartilage [4-6]. However, trials applying the proteinase inhibitors for clinical use as a disease-modifying treatment have to date been unsuccessful due to insufficient efficiency and severe adverse events, [7,8] turning the interest of researchers to the upstream signals of the proteinases in chondrocytes. Cartilage matrix proteins, especially undegraded COL2, are shown to induce proteinases through a receptor tyrosine kinase discoid domain receptor 2 (DDR-2) [9-11]. This causes the degradation of the matrix proteins, and the product fragments then induce proteinases through integrins α2β1 and α5β1 [9]. Another possible signal is pro-inflammatory factors like prostaglandins, tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-6, and nitric oxides that are produced mainly by synovial cells, similarly to rheumatoid arthritis [12]; however, accumulating evidence using experimental osteoarthritis models in knockout mice has not supported that these factors play a central role in the pathogenesis of osteoarthritis [13,14]. Our previous study also showed that levels of TNF-α, IL-1 and IL-6 in the synovial fluid from knee joints of osteoarthritis patients were much lower than those from patients with rheumatoid arthritis [15].

Endochondral ossification including chondrocyte maturation and apoptosis is an essential process for skeletal development and growth at the embryonic cartilage and growth plate cartilage, respectively, but should not occur under physiological conditions in the joint cartilage which is a permanent cartilage and is not destined to be replaced by bone. Recently, chondrocyte maturation has been implicated to be deeply involved in the pathogenesis of osteoarthritis. In articular cartilage of osteoarthritis patients, pathologic expression of type X collagen (COL10) and other differentiation markers, including annexin VI, alkaline phosphatase, osteopontin, and osteocalcin, have been reported, [16-20] indicating that the osteoarthritis articular cartilage cannot maintain the characteristics of the permanent cartilage, but adds those of the embryonic or growth plate cartilage. A mouse genetic study found the induction of Runx2, an essential transcription factor for chondrocyte hypertrophy, [21,22] in articular chondrocytes during osteoarthritis progression under mechanical stress, which led to cartilage degradation and osteophyte formation through the chondrocyte maturation and MMP production [23,24]. Carminerin, an inducer of chondrocyte calcification, [25] is also reported to contribute to osteophyte formation during the osteoarthritis progression by studies on the deficient mice [26]. In addition to chondrocyte maturation, chondrocyte apoptosis has also recently been reported to be involved in osteoarthritis development [27]. Intraarticular injection of a pan-caspase inhibitor suppresses cartilage degradation under osteoarthritis induction in rabbits [28]. Osteoprotegerin (OPG) is also suggested to prevent osteoarthritis progression through functional inhibition of its ligand TNF-related apoptosis-inducing ligand (TRAIL) [29].

The canonical Wnt-β-catenin signal, a potent regulator of skeletal development and homeostasis of adult bone mass, [30] is also known to induce chondrocyte maturation. During skeletal development and growth, activation of the Wnt-β-catenin signal in chondrocytes in limb buds or growth plates stimulates hypertrophy, calcification, and expressions of MMP and vascular endothelial growth factor [31-33]. The inhibition of Dickkopf-1 (Dkk1), a negative regulator of the Wnt-β-catenin signal, has been reported to allow conversion of a mouse model of rheumatoid arthritis to osteoarthritis, indicating a regulation of joint remodeling [34]. Furthermore, recent human genomic studies have demonstrated that polymorphisms in the FrzB gene encoding the secreted frizzled-related protein 3 (sFRP3), an extracellular inhibitor of the Wnt-β-catenin signal, is associated with an increased susceptibility to osteoarthritis [35-37]. The polymorphisms were at least partly associated with a reduced ability to limit β-catenin signaling. Increased levels of β-catenin have been reported in chondrocytes within areas of degenerative cartilage [38,39]. These suggest a possible involvement of β-catenin in the pathogenesis of osteoarthritis [40,41].

Zhu et al. for the first time provide direct evidence of the role of β-catenin in the development of osteoarthritis [42]. They created mutant mice using an elegant breeding scheme by crossing mice floxed for exon 3 of β-catenin with cartilage specific and tamoxifen

Correspondence to: The Chief of the Spine Center, Japan Community Health Care Organization (JCHO), Tsukudo 5-1, Tokyo 162-8543, Japan, Tel: 090-3002-5156; Fax: 03-3260-7840; E-mail: kawaguchih0126@gmail.com

Key words: osteoarthritis, wnt, β-catenin, cartilage, osteoarthritis, endochondral ossification

Received: May 02, 2016; Accepted: May 23, 2016; Published: May 27, 2016
The canonical Wnt signal paradoxically regulates osteoarthritis development through the endochondral ossification process

Figure 1: Possible mechanism underlying the regulation of cartilage degradation and osteophyte formation by β-catenin. β-catenin induces chondrocyte maturation and suppresses chondrocyte apoptosis. Hence, the gain- and loss-of-functions of β-catenin cause chondrocyte maturation and apoptosis, both of which are essential processes for endochondral ossification. The produced proteinases cause cartilage degradation at the center of the articular cartilage, where endochondral ossification remains incomplete due to insufficient vascular supply from the edge. Meanwhile, at the periphery of the articular cartilage, vascularity is accessible from synovium or tendon, so that endochondral ossification is completed and osteophytes are formed.


31. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. *Dev Cell* 8: 739-750. [Crossref]


