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Fructose impairs mitochondrial respiration and substrate
utilization in hepatocytes via the enzyme, glutamate
oxaloacetate transaminase
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Abstract

Excess fructose associates with increased production of reactive oxygen species (ROS) that inhibits enzymes such as aconitase, which should affect mitochondrial
metabolism. Yet there is a lack of studies investigating the impact of excess fructose on mitochondrial metabolic pathways and substrate utilization. We evaluated
the impact of excess fructose on hepatocyte mitochondrial enzymes; citrate synthase (CS), aconitase and glutamate-oxaloacetate transaminase (GOT). Also, high-
resolution using complex I-linked substrates [pyruvate+malate (PM), glutamate+malate (GM) and PGM]. Fructose decreased the activities of aconitase and GOT by
35% and 47% respectively. Respiration at Leak, OXPHOS and ETS states were reduced with GM but not PM or PGM. Thus, excess fructose inhibits GOT activity,
reduced mitochondrial leak respiration, OXPHOS and ETS capacity. These changes were observed with complex-1 linked respiration (substrates GM). Therefore,

fructose impairs mitochondrial respiration and substrate utilization via the enzyme GOT.

Introduction

There are increasing health concerns about the excess consumption
of fructose in the form of high fructose corn syrup in modern diets
[1]. Upon consumption, approximately 75% of fructose is metabolised
by hepatocytes via fructolysis for glycogenesisA, lactate production
and triglyceride synthesis [2]. The first step in this pathway is the
phosphorylation of fructose, to fructose 1-phosphate by the high
affinity ketohexokinase (fructokinase) enzyme. Because this reaction
has a low Michaelis constant, and is not controlled allosterically
or hormonally, plasma fructose is rapidly cleared and adenosine
triphosphate (ATP) inside the hepatocyte is rapidly depleted [3].
Depletion of ATP stimulates adenosine monophosphate deaminase
that activates the purine degradation pathway, leading to uric acid
production [4,5]. Excess uric acid increases mitochondrial reactive
oxygen species (ROS) production in hepatocytes [6,7] which induces
defects in a number of ROS-sensitive mitochondrial enzymes including
aconitase [8]. Excessive ROS production [9] and reduced aconitase
activity [10] is known to affect mitochondrial metabolism. Yet there is
a lack of studies providing extended investigation into the impact of
excess fructose on mitochondrial metabolic pathways and substrate
utilization. Such investigations is important, as the data generated could
build upon previous research, and contribute to the body of knowledge
on the adverse metabolic effects of excess fructose. We hypothesise
that fructose impairs mitochondrial metabolic pathways and substrate
utilization in hepatocytes. Therefore, the aim of this study was to
investigate the effects of excess fructose on mitochondrial metabolic
pathways and substrate utilization.

Materials and methods

Cell culture

The HepG2 cell line was obtained from the Council for Scientific
and Industrial Research (CSIR) (Stellenbosch, South Africa). Cell
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lines were initially propagated in 25 cm? flasks (Bibby Sterilin, Stone,
Staffordshire, UK), at 37 °C in 5 mL DMEM (Gibco BRL, Inchinnan,
Scotland) containing 10% (v/v) fetal bovine serum, 20 mM HEPES, 10
mM NaHCO,, 100 ug mL" penicillin G, and 100 ug mL" streptomycin
sulfate (Whittaker Bioproducts, Walkersville, MD, USA) at pH 7.5.
Cells were incubated for 24 h to permit attachment and grown to semi-
confluence and passaged 1:3 every 4-5 days. One group of cells received
normal growth medium (control group, DMEM for 72 hours), while
the second group were exposed to growth medium supplemented with
excess fructose (15 mM, 72 hours) as previously reported [6].

Enzyme activity measurements

Sample preparation: HepG2 cells were homogenised in extraction
buffer (0.1 M Tris-HCl; 15 mM Tricarballylic acid; pH 7.8) and
incubated on ice for 20 min. The homogenate was centrifuged at 10 000
rpm for 20 min and the supernatant was used as a sample for further
experimentation. Subsequent enzyme assays were performed according
to modified protocols previously described by Wang et al. [11].

Citrate synthase: The following components were added in a
cuvette: 473 ul of citrate synthase buffer (0.1 M Tris-HCI, 1.25 mM
5,5 -dithiobis-[2-nitrobenzoic acid] in deionized water, pH 8.0), 2 ul
of sample and 25 pl of Oxaloacetate-Acetyl-CoA solution (50 mM
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oxaloacetic acid, 5 mM of Acetyl-CoA sodium salt in deionized water;
pH 6.5) and was vortexed thoroughly. The absorbance was read in
the spectrophotometer at 412 nm after setting a blank reading with
pure buffer. The absorbance was used to calculate the specific enzyme
activity (fmol.cell*.min™) [11].

Aconitase: A reaction mix (490 pl) was prepared and consisted of
0.5 mM NADP* solution, 5 mM Aconitase Buffer (0.005 v/v chloroform,
10 mM sodium citrate and 160 mM triethanolamine in dHZO; pH7.4),
0.5 mM MgCl, and isocitrate dehydrogenase standard. Ten microliters
of this sample were added into a cuvette and vortexed thoroughly.
The mixture was incubated for 2-3 minutes at room temperature to
equilibrate, and the absorbance was read in the spectrophotometer at
340 nm after blanking with buffer. The absorbance was used to calculate
the specific enzyme activity (fmol.cell’.min") [11].

Glutamate-oxaloacetate transaminase: The activity of glutamate-
oxaloacetate transaminase was measured with a standard commercially
available ELISA Kit (Sigma Aldrich, Kempton Park, and Johannesburg).
Cells were homogenised in ice-cold GOT buffer, sonicated and
centrifuged at 13 000 rpm for 10 min. The standards used ranged from a
concentration of 0- 10 nmol well’. The reaction mix [enzyme, substrate
and a developer] (1 mL) and the supernatant (50 uL) were added into
each well. The mixture was vortexed, the plate was incubated at 37 °C
for 3 min and measurements (A450) were taken every 5 min for a total
period of 30 min. The final GOT activity was calculated by using the
formula and data were expressed as nmol.min’ ml", as previously
reported [11].

B x sample dilution factor

GOT activity = —
Reaction time x V

B=Amount (nmol) of glutamine generated between the initial and
the final reading

Reaction time=T. -T . (min)

final "~ initial

V=Sample volume added to each well.
Mitochondrial respiration

Mitochondrial respiratory rates were measured at 37°C using the
Oroboros 2K oxygraph (Oroboros® instruments, Innsbruck, Austria)
[12,13]. Control and fructose-treated cells were trypsinized and
centrifuged at 16 000 rpm for 3 min. Cells were counted, (100 000
cells per mL), centrifuged and the cell pellet suspended in 2 mL of
DMEM (200 000 cells per 2 mL) containing of digitonin (10 mg/mL
DMSO) for 15 min to induce permeabilisation. To assess whether
permeabilisation did not damage the cells, cytochrome-c titration
was included in the respiratory protocol. As described in literature
[13], a spike in the oxygen flux signal, would signify that digitonin
damaged mitochondrial integrity, in which case the experiments
would be discontinued. Digitonin treated cells were washed with and
re-suspended in respiration media (MIR05, 2 mL), and added into
each oxygraph chamber. The chambers were hyper-oxygenated (from
200 to 450 pumol L) and the oxygen flux was allowed to stabilize for
about 30 minutes. The oxygen flux (pmol.s'.mL") was recorded using
DatLab software (Oroboros® instruments, Innsbruck, Austria). The
following complex I-linked substrate combinations were used to assess
respiration at LEAK, OXPHOS and ETS states: a) 5 mM pyruvate+2
mM malate (PM) b) 10 mM glutamate+2 mM malate (GM) and c)
5 mM pyruvate+10 mM glutamate+2 mM malate (PGM) [12,13].
We chose PM substrate because it is metabolised via aconitase in the
tricarboxylic acid cycle, whereas GM substrate bypasses this enzyme.
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Hence, we wanted to assess which substrate combination would be
sensitive to tricarboxylic acid cycle enzyme defects, in addition, we
used PGM since it is the commonly used substrate for complex-I linked
respiration.

To induce LEAK respiration, one of the three substrate
combinations was added to the chambers containing permeabilized
cells [12,13]. Thereafter, 2.5 mM adenosine diphosphate (ADP) was
added to stimulate oxidative phosphorylation (OXPHOS) capacity
that was followed by addition of 10 uM Cytochrome-C to check
mitochondrial outer membrane integrity [14]. Oligomycin (2.5
uM) was added to induce another LEAK state. Carbonyl cyanide
m-chlorophenyl hydrazine (CCCP), a chemical uncoupler, was
titrated in a 0.05 uM stepwise manner until the maximum capacity
of the electron transfer system (ETS) capacity was reached. Rotenone
(0.5 uM), an inhibitor of complex I, was added in order to determine
residual oxygen consumption (ROX). Experiments were repeated using
the three-substrate combinations at different occasions. Ascorbate and
TMPD were titrated for measurement of complex-4 linked respiration/
mitochondrial content. Oxygen fluxes at all respiratory states were
normalised to the TMPD flux/ complex 4-oxygen flux in order to
correct for variations in cell/mitochondrial content in each of the
oxygraph chambers. Mitochondrial respiratory fluxes were expressed
as pmolO,/s*ml/CIV, while control ratios and coupling efficiencies did
not have an SI-unit [13].

Statistical analysis

Data are presented as the mean + standard error of mean (SEM).
Statistical comparison of the differences between groups were analysed
for statistical significance using an unpaired T-test and Mann-Whitney
U test performed with GraphPad Prism Software (version 5.00,
GraphPad Software, San Diego, CA, USA). When comparing data, a
difference with p<0.05 was considered significant.

Results

Enzyme activity measurements

Figure 1 shows the activities of citrate synthase, aconitase and
glutamate-oxaloacetate transaminase in fructose-treated and control
HepG2 cells. Fructose had no influence on the activity of citrate synthase
after 72-hour exposure (Figure 1A). In contrast, fructose significantly
reduced (p<0.011) the activity of aconitase (Figure 1B) and glutamate-
oxaloacetate transaminase (Figure 1C) by 35% and 47%, respectively, in
comparison to untreated cells.

Mitochondrial respiration

Figure 2 compares LEAK respiration, and OXPHOS and ETS
capacities when using a PM substrate combination in fructose-treated
and control HepG2 cells. Fructose did not affect complex 4-oxygen flux,
which was consistent throughout all experiments and therefore used
as normalising factor for respiratory data (data not shown). Fructose
had no significant effect on oxygen flux when using PM as shown by
the representative oxygraph trace (Figure 2A, an uncorrected trace) and
Figure 2B showing the mean oxygen flux at various respiratory states
(normalised to complex 4-oxygen flux). Of note, fructose significantly
reduced (p<0.028) oxygen flux in all respiratory states when GM was
used as substrate (Figure 3A, an uncorrected trace and Figure 3B,
normalised to complex 4-oxygen flux). Moreover, the combination
of PGM substrates had no influence on oxygen flux (Figure 4A, an
uncorrected trace and Figure 4B, normalised to complex 4-oxygen
flux).

Volume 5(5): 2-5



Madlala HP (2018) Fructose impairs mitochondrial respiration and substrate utilization in hepatocytes via the enzyme, glutamate oxaloacetate transaminase

T 8

o

= 1

2E s

2=

o= 4

T @

n 2

035 2

£ :
Control

Fructose

Aconitase activity
{fmol.cell 1.min™)

—

25 ‘T_l

204 —T— §' £
a7

15 5 S ¢ 0.6

1.0 - £ o4
o —

05 % o ] g 02

0.0 . P £ o0

Control Fructose

Con'trol

L]
Fructose

Figure 1. Comparison of activities for citrate synthase (A), aconitase (B) and glutamate-oxaloacetate transaminase (C) in control and fructose-treated HepG2 cells. Data are presented as
means, and vertical bars indicate SEM (n=6 in each group). "P<0.011 by comparison with control cells
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Figure 2. Representation of O, consumption trace and (A) pulled data (B) of permeabilized control and fructose treated HepG2 cells (15 mM) using PM. The sequence of titration was
5 mM Pyruvate +2 mM Malate, 2.5 mM ADP, 10 pM Cytochrome C, 2.5 pM Oligomycin, steps of 0.05 uM CCCP, 0.05 uM Rotenone and 2 mM ascorbate +0.5 mM tetramethyl-p-
phenylenediamine (TMPD). Data are presented as means, and vertical bars indicate SEM (n=7 in each group)
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Figure 3. Representation of O, consumption trace and (A) pulled data (B) of permeabilized control and fructose treated HepG2 cells using GM. The sequence of titration was similar to
that of fig 2 except for leak substrates, 10 mM Glutamate +2 mM Malate. Data are presented as means, and vertical bars indicate SEM (n=7 in each group). "P<0.028 by comparison with

control cells
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Discussion

The present study investigated the effects of excess fructose on
mitochondrial metabolic pathways and substrate utilization. We found
that 72 hrs of 15 mM fructose exposure inhibited aconitase by 35% and
GOT, by 47%, but had no influence on citrate synthase. Furthermore,
fructose reduced oxygen flux in all the mitochondrial respiratory states
(LEAK, OXPHOS and ETS capacity) measured when GM but not PM
was supplied as substrates.

Previous studies demonstrated that fructose increases ROS
production in hepatocytes that reduces mitochondrial aconitase activity
[5,7]. These effects were accompanied by accumulated citrate content
and increased triglyceride concentration [5,7]. Our study provides
further insight into the effects of fructose on mitochondrial enzymes,
as we show that fructose inhibited activities of aconitase and GOT.
This effect on GOT activity is observed in our study, either because
we implemented longer fructose exposure (72 hrs versus 48 hours) or
due to difference in cell type (hepatocytes versus L6). As opposed to
previous work [6], our study did not show a change in CS activity. This
could be attributed to different levels of ROS between our hepatocytes
and their L6 cells [6]. This could have affected the mitochondrial
enzymes differently, and thus account for the reduced aconitase and
GOT activity yet unaffected CS in our study.

However, we did not measure ROS in our study and therefore
future experiments are required to investigate the impact of fructose
on the various types of ROS in hepatocytes and to correlate this to the
different effects on the relevant enzymes. Another possible reason for
not observing any effect of fructose exposure on CS activity could be
due to the type of in vitro model used in the study (L6 versus HepG2
cells). L6 myotubes are mouse cells, whereas HepG2 cells are human
liver carcinoma cells that have a tendency to be resistant to a variety of

stimuli [15,16], and they have an upregulated carbohydrate metabolism
[17,18]. To this end, another study has shown that in a model of HepG2
mitochondrial dysfunction, CS activity remained unaltered despite
the presence of a pathophysiologic stimulus [19]. The resistant nature
of HepG2 cells could mean that they have CS enzymes that are more
resistant to the impact of fructose, and the increased carbohydrate
metabolism could be underlined by increased CS activity that is not
inhibited by fructose. These reasons may provide some explanation as
to why fructose reduced activities of aconitase and GOT but not CS in
our study albeit subject to debate.

Our study further demonstrated that fructose not only inhibited
aconitase and GOT, but also metabolic pathways and substrate
utilization. Due to the inhibitory effect of fructose on aconitase, we used
PM and GM as substrate combinations in separate experiments. This
was because PM involves aconitase while GM bypasses this enzyme
during their metabolism in the TCA cycle. We wanted to tease out the
substrate combination that would reflect impairment in respiration and
we eventually used the combination of PGM as this is the commonly
used substrate for accessing complex-I function. Fructose exposure had
no influence on O, flux in all respiratory states when using PM as a
substrate (Figure 2). We explained these results based on Figure 5A;
fructose-induced inhibition of aconitase prevented the conversion of
citrate to 2-oxoglutarate hence causing accumulation of citrate inside
the mitochondrial matrix. Due to this accumulation, citrate would then
escape the mitochondria into the respiratory medium and respiration
would continue as normal. The citrate that is expelled is used to make
fatty acid and its escape reduces the efficiency of PM breakdown. Similar
results of no effect were obtained with PGM substrate combination
(Figure 4). Since PM and PGM had no effect on O, flux this implies that
these substrate combinations are not a suitable for assessing defects in
mitochondrial enzymes.
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Figure 4. Representation of O, consumption trace and (A) pulled data (B) of permeabilized control and fructose treated HepG2 cells using PGM. The sequence of titration was similar to that
of fig 2 and 3 except for leak substrates, 5 mM Pyruvate +10 mM Glutamate +2 mM Malate. Data are presented as means, and vertical bars indicate SEM (n=7 in each group)
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Interestingly when using the GM substrate combination, complex
1-linked respiratory states were reduced in fructose-treated cells. These
results could be explained based on (Figure 5B); fructose-induced
inhibition of GOT would prevent the conversion of oxaloacetate to
2-oxoglutarate hence causing accumulation of oxaloacetate. Increased
oxaloacetate would suppress malate dehydrogenase hence reducing
NADP produced by this reaction. Other studies have reported that
fructose reduces glutamate dehydrogenase activity [20,21] that could
lead to a lesser conversion of glutamate to alpha-ketoglutarate and
reduced mitochondrial respiration via the GM pathway. Therefore, it
is likely that in our study, fructose reduced glutamate dehydrogenase
in addition to GOT activity, hence resulting in reduced mitochondrial
respiration with GM but not with PM and PGM. However, because
we did not measure glutamate dehydrogenase activity in our study,
we cannot provide a concrete analysis but suggest that the GOT
impairment we observed is in part responsible for overall reduction of
NADH/NAD?* levels that leads to reduced complex-I linked respiration
with GM substrate. Although we did not measure NADH/NAD* levels,
previous studies have reported a link between fructose and reduced
NADH/NAD* levels [20].

Conclusions

In summary, novel findings of this study, is that in addition
to aconitase, excess fructose inhibits GOT activity in hepatocytes.
Furthermore, fructose reduced mitochondrial leak respiration,
OXPHOS and ETS capacity, when we used the substrate combination
GM. These changes were not seen with PM or PGM. Therefore, the
adverse metabolic effects of excess fructose not only inhibit aconitase
as previously reported, but also impairs mitochondrial respiration and
substrate utilization via the enzyme GOT.
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