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Abstract
Mesenchymal stem cells (MSCs), as a potential therapeutic, have been put into a great quantity of preclinical or clinical researches which are considered as one of 
the pivotal parts in the tissue repairation. A body of evidence have demonstrated that, acute kidney injury(AKI) which is described as a complex pathophysiology 
containing a series of innate and adaptive immune responses, has a satisfactory morphological and functional recovery owing to the MSCs potentially because the 
multiple functions like adhesion, proliferation or differentiation, restoration and immunosuppressive effect. The present review will focus on the exploration of MSCs 
in AKI detailed in immunologic system as far as possible.
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Introduction
The patients suffering from Acute kidney injury (AKI), in spite of 

the development of the medicine, have an increase in number during 
these years, especially in the Intensive Care Unit (ICU). Although 
early diagnose and seasonable supportive treatment were given to the 
patients, the results always came to a long-term risk of chronic disease, 
end-stage renal disease, or even the death [1]. It has been reported 
that AKI occurs in approximately 13 million people in the whole 
world every year and leads to 13 percent of the death rate [2]. Kidney 
units which make great demands on ATP supply and flood flow due 
to their filtration and reabsorptive process are vulnerable to ischemia, 
nephrotoxin or sepsis [1,3]. Even though the mechanisms involving in 
AKI is much more complex, innate and adaptive  immune responses 
play a key role in the pathophysiology [4,5].

Mesenchymal stem cells (MSCs) which can be obtained from 
multiple resources, like bone marrow, skeletal muscles, umbilical cord 
vein, peripheral blood and adipose tissue, are the most critical part 
consisting of tissue remodeling and post-damage  reparation [6]. A 
succession of studies have demonstrated that MSCs can be useful in 
the treatment in the different types of experimental AKI models [7]. 
The properties of MSCs are their capability of secreting molecules 
and their potential for differentiation and proliferation in the other 
tissues [8]. Otherwise, these cells have shown their immunosuppressive 
capability likely related to the lack or low expression of class II major 
histocompatibility complex (MHC-II) and co-stimulatory molecules 
on cell surface, which can affect different pathways of the immune 
responses [9]. Moreover, the process of MSCs preferentially migrating 
into damaged tissues, which is called homing [10,11], have grasped the 
notion of researchers recently and high-quality studies have found that 
injured renal endothelial and tubular epithelial cells can interact with 
MSCs by signaling molecules, such as chemokines, adhesion molecules 
and matrix metalloproteinases [11-13].  Nonetheless, the specific 
mechanisms of the immune modulations of MSCs are still unknown. 
This review is bound to summarize recent studies on the application of 
MSCs in AKI emphasizing on their immune-privileged effect. 

Innate immune responses
Neutrophils and nature killer cells

As well as an important inflammatory cell, neutrophil plays a key 
role in the initial process of AKI where neutrophils roll on endothelium 
by both ICAM-1 allowing their attachment before their potential 
transport and TNF inducing their infiltration [14,15]. In addition, 
rising attention on urinary neutrophil  gelatinase-associated lipocalin 
(uNGAL), a protein expressed by neutrophils [16], which has been 
studied in recent years, as an indicator of AKI resulting from different 
clinical incidents [17-20]. Since certain conclusion of uNGAL remains 
rewarding, the significance of neutrophils in the pathological process of 
kidney injury cannot be ignored. 

NK cells along with neutrophils are the earliest  responder to 
AKI which have been reported to trafficked into the post-ischemic 
kidney by 4 hours of  reperfusion [21]. Unlike T and B lymphocytes, 
NK cells can lyse target cells instantly without antigen presentation. 
While NK cells can be stimulated by class I MHC or class I MHC-like 
ligands on target cells [22] to release cytotoxicity, chemokine and pro 
inflammatory  factors produced by NK cells also participate in the 
injury [23,24]. 

Previous studies have demonstrated that MSCs can reduce the 
expression of pro-inflammatory cytokines while  upregulate the 
expression of anti-inflammatory cytokines inducing by their paracrine 
function [25-27]. However, little information is available regarding the 
mechanism of cellular interactions between MSCs and neutrophils, and 
the effect of MSCs on NK-mediated cytotoxicity is still uncertain. Some 
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studies have focused on these confusions that in the presence of MSCs, NK 
cells can be activated with reduction of cytotoxicity releasing and inhibition 
of proliferation but at the same time MSCs become the target cells because 
of high expression of HLA-I molecules on their surfaces [27-29]. 

Macrophages

The innate immune response to injured kidney involves the 
recruitment of naive monocytes which is conducted by  CCR2  and 
CX3CR1 signaling pathways [30,31]. The local environment full 
of termed pathogen-associated molecular patterns(PAMPs) or danger-
associated molecular patterns(DAMPs) along with IFN-γ by Th1 T cells 
and NK T cells, leads to the maturation of macrophages, more accurately, 
the polarized activation of M1 macrophages, a classical category which 
is considered as a host defense that induces tissue damage, aggravate 
inflammation and clear apoptotic cells [32,33]. In the contrary, the 
alternative category of M2 macrophages stimulated by IL-4/IL-13 
has a  complex function containing wound healing, fibrosis, insulin 
sensitivity, and immunosuppression [33,34].

Studies have realized the immunomodulation MSCs have on 
the macrophages [35]. It has been reported that MSCs can induce 
M2 macrophages in some inflammation-related organ injury which 
includes our focused point, kidney. Since MSCs have the ability to 
home and migrate to injured kidney [10], they could not be found in 
the kidney from the observation of the last experiment [36]. It showed 
some important data which demonstrated that MSCs could improve 
kidney injury induced by glycerin inserted along with the increase 
frequency of M2 macrophages filtration. The protection may result 
from the increasing number of M2-polarised macrophages by MSCs 
secreting many soluble factors which make the microenvironment 
more suitable for M2 phenotype instead of cell to cell interaction. This 
mechanism also be proved by another study on the AKI induced by 
ischemia reperfusion [37]. However, it observed the image that MSCs 
locating in both the lung and kidney tissue. Moreover, MSCs displayed 
strong their power of proliferation on the tubular epithelial cells. If 
different origins of MSCs make the variances still needs for further 
study.

NK T cells

NK T cells are a unique subset included in T lymphocyte which 
express a characteristic marker T cell receptor but simultaneously share 
some surface antigens like CD161 with NK cells [38]. However, with 
the further study on NK T cells, it is far from accurate to classify NK 
T cells as T cells that also express NK receptors. The newest definition 
is CD1d-dependent nature killer-like T cells, in which CD1d is 
expressed on various cells like dendritic cells and macrophages [39]. 
Moreover, compared with cytotoxic effect, NK T cells have a more 
remarkable property that  is their ability to rapidly produce large 
quantities of cytokines such as  IFN-γ, TNF-α, IL-4, IL-13 which can 
induce Th1 or Th2-like effect within 3 hours in the kidney injury [40]. 
This ability makes NK T cells contact innate  immunity with adaptive 
immunity [41] and plays an important role in  pro-inflammatory or 
anti-inflammatory functions [42]. There are two main types of NK T 
cells: type I, invariant NK T cells (iNKT cells) that express conservative 
TCRs and can be stimulated by glycolipid antigens and type II NK T 
cells that express much more TCRs and can be stimulated by the lipid 
antigens [39]. Blocking the activation of iNKT cells with the anti-CD1d 
mAb or using iNKT cells deficient mice has been demonstrated renal 
protection in vivo [40]. Another study found that the activation of type 
II NKT cells could alleviate inflammation and epithelium injury by 
enhancing the HIF-1α and IL-10 pathways [43]. 

Even though few studies can be found surrounding the effect of 
MSCs on the phenotype or function of NK T cells, some latest reports 
may inspire new ideas. Experiments on the liver injury induced by 
α-galactoceramide showed that MSCs had remarkable effect on the 
decrease of hepatotoxicity of NKT cells [44,45]. As the bridge of innate 
immune and adaptive immune system, also as the primal process of 
inflammation, NKT cells desire to be more detected.  

Adaptive immune response
T cells

T lymphocyte cells are a big family containing various lineages 
which can be divided in  different groups according to different 
standards. All the T cells express either CD4 or CD8, and naive CD4+ 
T cells can further differentiate into Th1 cells, Th2 cells, Th17 cells or 
other Th cells, which is determined by the surrounding context [46]. 
Another splenic CD4+ T cells turn into Regulator T cells (Tregs) that 
suppress the activation of most pro-inflammatory cells [47]. CD8+ T 
cells become cytotoxic cells that are able to be activated by antigens 
presented on dendritic cells, tumor cells or infected cells and kill target 
cells with perforin, granzymes and Fas ligand [48]. NK T cells make up 
a quite small but significant subgroup of T cells as mentioned above.

Obviously, CD8+ T cells participate in the pathophysiological 
process of AKI after receiving the presentation of the antigens which 
has been well demonstrated in many studies [49-51]. Moreover, the 
accumulation of activated and effector-memory T cells can be found 
in the kidney at 2 and 6 weeks after moderate or severe ischemia-
reperfusion which is related to the long-term injury and fibrosis whereas 
the  depletion of T lymphocytes   has no protective effect on neither 
cortex or medulla which needs further experiments to  illuminate the 
mechanism [52].

Regulator T cells (Tregs) are an important subset of T lymphocytes 
with the  identification of a pivotal transcription factor, forkhead box 
P3(FOXP3), and two kinds of surface marker, CD4 and CD25 [47]. 
It has been demonstrated that Tregs have particular suppression in 
effector T cells and other immune responses or even inflammation both 
in vitro or in vivo probably via cAMP driven cell-contact mechanism 
[47,53]. It is almost certainly that so much attention has been paid on 
the Tregs to study their potential on the  therapeutical application in 
the AKI.

MSCs have their no immunological restrictions with the 
low expression of  MHC-II and have an effect on almost all T cell 
subpopulation, like CD4+ and CD8+ T cells, naive T cells and memory 
T cells [9,54,55]. Co-culturing with MSCs may result in a shift of Th 
function activity from the population with phenotype Th1 which 
produces pro-inflammatory cytokines IL-2 and IFN-γ that plays a 
significant role in AKI models, to the Th2 population which produces 
anti-inflammatory cytokines IL-4 and IL-10 [56,57]. Moreover, MSCs 
can induce naive T cells into Tregs due to the suppression of allogeneic 
lymphocyte proliferation [10,58,59]. Although quite helpful  effect 
has been found in animal models of AKI with the presence of MSCs 
interaction with Tregs, the unknown mechanism limits its wider 
application. Jie Hu et al. [11] has promoted that MSCs induce Tregs 
infiltrating into the  injury kidney via an MSC-splenocyte interaction 
and MSCs have a  negative engraftment into the kidney. However, it 
is contradictory to the homing phenomenon which is characterized 
that MSCs preferentially migrate to injured tissue responsible for the 
signaling molecules released from the damaged tissue, like chemokines, 
adhesion molecules and matrix metalloproteinases and receptors on 
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the MSC surface [11,12]. Therefore, more studies are required to detect 
the real world of MSCs. 

B cells

B cells are mediators of various autoimmune diseases, such as 
experimental allergic encephalomyelitis (EAE), collagen-induced 
arthritis and inflammatory bowel disease because of their prominent 
inflammatory response which is similar to the pathophysiology 
of AKI [60-62]. What’s more, B cells contribute to the rejection in 
renal  allograft by differentiating into  plasma cells filled up with the 
kidney [63,64]. Hye Ryoun Jang et al. [65] reported that the traffic of B 
cells had a negative effect on the repairation of tubular regeneration and 
the modulation of B cells or  targeting CD126 expressed on the surface 
of mature B cells might have properties on the kidney restoration. 
Similar to T cells, MSCs can also inhibit B cells in all of their grow-up 
process, activation, proliferation, differentiation and immunoglobulin 
production [66,67]. However, not enough researches have been focused 
on the MSCs interaction with B cells in the AKI which gives a novel 
insight to the following studies. 

Summary

Since it has been known that there is something closely related 
between immune system and the pathological process of AKI, how do 
different kinds of immune cells accurately work remains mysterious. 
Moreover, compared with the damage effect of some immunoreaction, 
the others which show striking renal protection in the AKI should be 
paid more attention. Although quite a few kinds of leukocytes like 
M2 macrophages and B lymphocytes may have beneficial influence 
on the recovery of kidney, the spectacular positive modulation makes 
regulatory T cells stand out of these cells. So, why do we not go further?
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