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Abstract
Deficiency of brain kynurenine-3-monooxygenase (KMO), a key enzyme of down-stream metabolism of tryptophan (Trp) derivative, kynurenine (Kyn), shifts KYN 
metabolism from formation of 3-hydroxyKyn (3-HK) toward production of kynurenic (KYNA) and anthranilic (ANA) acids. Genetically- or pharmacologically-
induced KMO deficiency resulted in elevated concentrations of Kyn, KYNA, ANA and decreased 3-HK not only in brain but in serum of experimental animals as 
well. However, in schizophrenia patients (SP) elevated serum concentrations of ANA and decreased 3-HK were reported without concurrent increase of Kyn and 
KYNA. Present study found elevated Kyn:Trp ratio (by 20%) and Kyn concentrations (by 30%) in serum of SP with elevated serum KYNA concentrations (by 40%). 
Elevated serum KYNA and Kyn were reported previously in type 2 diabetes patients and in Zucker Fatty Rats, a model of metabolic syndrome (MetS) suggesting 
that increased formation of peripheral KYNA and Kyn underlines predisposition of sub-group of SP (and their first-degree relatives) to development of MetS. One 
of the mechanisms mediating contribution of elevated KYNA and KYN to MetS might be their ability to activate aryl hydrocarbon receptor (AHR), considering that 
AHR activation promotes induction of MetS in mice fed by Western diet. Evaluation of serum Kyn and its down-stream metabolites might help to identify SP at risk 
for development of MetS. Modulation of down-stream Kyn metabolism might be a new target for prevention/treatment of MetS in SP
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Introduction
There are converging evidences of the involvement of tryptophan 

(Trp) – kynurenine (Kyn) pathway (KP) in pathogenesis of 
schizophrenia. Kyn is formed from Trp during the initial phase of 
KP [1]. Further metabolism of KYN is trifurcated into production of 
3-hydroxyKyn (3-HK), catalyzed by vitamin B2-dependent Kyn-3-
monooxygenase (KMO); kynurenic acid (KYNA) and anthranilic acid 
(ANA), catalyzed by vitamin B6-dependent Kyn-aminotransferase 
(KAT) and kynureninase (Kynase), resp.(Fig.1A) [2]. “KYNA 
hypothesis of schizophrenia” [3] was initiated by a discovery of KMO 
deficiency in Broadmann area of brain of schizophrenia patients 
(SP) [4], and was further supported by findings of elevated KYNA 
concentrations in brains [5] and CSF [6] of SP and by observations of 
KYNA-induced schizophrenia-like symptoms in experimental animals 
[7], including disruption of pre-pulse inhibition [8 ] and impairment 
of cognitive functions [9], and damage of spinal cord myelin [10 ] 
and impairment of oligodendrocyte viability [11]. KMO deficiency 
increased availability of Kyn as a substrate for unsaturated enzymes, 
KAT and Kynase, and, therefore, shifts down-stream metabolism of 
Kyn from formation of 3-HK toward production of KYNA and ANA 
[1,2]. It was suggested that KYNA contributed to up-regulation of brain 
dopamine receptors, the hall mark of schizophrenia, via its antagonism 
to NMDA and a7-nicotinic acetylcholine receptors [1,3]. Besides the 

brain (e.g., glial cells), Kyn, KYNA, ANA, and 3-HK are formed by 
peripheral tissues (e.g., macrophages, pancreatic cells, adipocytes) 
[1,12,13]. In experimental studies, KMO deficiency, induced by 
vitamin B2-deficient diet [14,15] or by knockout of gene, that encodes 
KMO [16,17], all four markers of KMO deficiency, i.e., elevated Kyn, 
KYNA and ANA and decreased 3-HK, were observed not only in brain 
but in serum as well. However, in clinical studies, only elevated ANA 
and decreased 3-HK concentrations were observed in serum of SP 
without concurrent increase of Kyn and KYNA [2,18]. Therefore, we 
were interested to expand our previous study [2] by assessing serum KP 
metabolites in a subgroup of SP with elevated KYNA. 

Materials and methods 
Patients 

Overnight fasting blood samples from SP (diagnosed according to 
DSM-V) with serum concentrations of KYNA higher than in controls 
[2] (three men and four women, age range from 38 to 56 years) were 
selected for analysis of Kyn and its metabolites. All patients were taking 
anti-psychotic medication: Abilify (three patients), Haloperidol (two 
patients) and Haloperidol decanoate injections (two patients). 
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Healthy Subjects (Controls) 

There were 12 subjects (6 females and 6 males, age range from 32 to 
64 years) [2]. Study was approved by Tufts Medical Center IRB. 

Assessment of kynurenine metabolites 

Serum samples were stored at −50°C until analysis. ANA, Trp, Kyn, 
KYNA and 3-HK concentrations were analyzed by modified HPLC–
mass spectrometry (MS) method as described elsewhere [2]. 

Statistical analysis 

Results are presented as mean ± standard error (Trp and Kyn in 
μM and AA, KYNA and 3-HK in nM). Statistical significance was 
assessed by unpaired t test with Welch correction. 

Results and discussion 
Serum concentrations of Kyn and its metabolites 

KYNA concentrations in studied SP were higher (approximately by 
40%) in comparison with controls. Kyn concentrations were elevated 
by 30%. Kyn:Trp ratio was increased by 20%. There was no statistically 
significant difference between concentrations of Trp, 3-HK and ANA 
in SP and controls (Table 1).

Experimental data suggested, at least, four potential clinical 
markers of KMO deficiency: elevation of KYN, ANA, KYNA and 
decrease of 3-HK serum concentrations. However, elevated ANA and 
decreased 3-HK serum concentrations without concurrent elevation 
of Kyn and KYNA concentrations were reported in SP [2,18]. In the 
present study of SP with higher than controls KYNA concentration, we 
observed elevation of serum concentrations of Kyn without concurrent 
elevation of ANA and decrease of 3HK concentrations. Notably, we 
observed a significant increase of Kyn:Trp ratio, suggesting activation 
of Trp conversion into Kyn catalyzed either by inflammation-induced 
indoleamine-2,3-dioxygenase(IDO) or by stress-induced Trp-2,3-
dioxygeanse (TDO) [1]. The latter was previously described in 
prefrontal cortex of SP [19]. Therefore, elevated serum concentration 
of Kyn (and Kyn:Trp ratio) might be a result of KMO deficiency and/
or IDO/TDO activation. Present data and our previous report suggest 
the existence of, at least, two patterns of peripheral KMO deficiency 
in SP: elevated ANA with decreased 3-HK (without changes of Kyn 
and KYNA) (Fig.1B); and elevated Kyn and KYNA (without changes 
of ANA and 3-HK) (Fig.1C). Peripherally produced Kyn, ANA and 
3-HK (but not KYNA) might contribute to central pathology by 
crossing blood brain barrier (BBB) [20] and entering a pool of centrally 
formed Kyn metabolites [21]. Increased predisposition of SP to 
development of Metabolic Syndrome (MetS), e.g., insulin resistance, 
obesity and dyslipidemia, suggests common signaling pathway 
between schizophrenia and MetS [22]. Dysregulation of Trp – Kyn 
pathway was suggested as one of the mechanisms of MetS [23,24,25] 

and as a common signaling pathway for schizophrenia and MetS [26] 
contributing to high prevalence of MetS in schizophrenia. Elevated 
serum concentrations of KYNA and Kyn, indicative of KMO deficiency, 
were observed in type 2 diabetes [27-29] and in Zucker Fatty Rats (ZFR), 
an experimental model of insulin resistance and MetS [30]. KYNA and 
KYN are endogenous ligands to aryl hydrocarbon receptor (AHR) that 
regulates xenobiotic-metabolizing enzymes such as aryl hydrocarbon 
hydroxylase (cytochrome P450) in humans and rodents [31]. AHR 
over-activation promoted while AHR deficiency protected mice from 
diet-induced obesity [32,33]. Therefore, peripheral KMO deficiency 
might contribute to metabolic abnormalities in SP via activation of 
AHR by increased formation of down-stream Kyn metabolites. Further 
studies might explore the use of evaluation of serum concentrations 
of Kyn and its down-stream metabolites to identify SP at risk for 
development of MetS. Modulation of down-stream Kyn metabolism 
might be a new target for prevention/treatment of MetS in SP.

Conclusion
KMO deficiency is manifested by elevation of Kyn, KYNA and ANA 

and decrease of 3-HK in brain and serum of experimental animals. 
Present results (together with our previously published data) suggest 
that in serum of SP elevation of KYNA is associated with elevation 
of KYN (and Kyn:Trp ratio) while elevation of ANA is associated 
with decrease of 3-HK. Further studies may find clinical correlates 
of different pattern of KMO deficiency-dependent metabolites in 
SP. Brain KMO deficiency might contribute to positive and negative 
symptoms of schizophrenia while peripheral KMO deficiency might 
underline increased predisposition of SP (and their first-degree 
relatives) to development of metabolic abnormalities.
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