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Abstract
Cancer and thrombotic events are strongly associated and von Willebrand factor (VWF) plays a key role in these biological processes. Degradation by ADAMTS13 
of ultralarge VWF multimers (UL-VWF) enriched in VWF is crucial to avoid their accumulation in blood resulting in thrombosis. Neutrophil Extracellular Traps 
(NETs) represent a relatively new mechanism involved in cancer-associated thrombosis and metastases. Since levels of plasma VWF are significantly elevated in 
cancer patients and NETs DNA positively correlates with VWF and negatively with levels of ADAMTS13, here is highlighted how VWF, ADAMTS 13 and NETs 
can be correlated in cancer-associated thrombosis and tumor progression.
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Introduction 
A 4- to 7-fold increased risk of venous thromboembolism 

(VTE) has been reported for cancer patients as compared to general 
population and VTE is the second most prevalent cause of death in 
cancer [1-3]. Patients with metastatic disease have a higher risk of 
VTE than those with localized tumors [4-6] and platelets play a key 
role in cancer development and they can interact with metastasizing 
cancer cells becoming deadly allies [7]. Tumor cell-induced platelet 
aggregation (TCIPA) is a multistep process in which tumor cells can 
activate and aggregate platelets leading in the blood stream to the 
initiation of thrombus formation as well as metastatic cascade [8]. In 
in vitro model system, platelet rich plasma (PRP) of cancer patients 
resulted in enhanced aggregation by 127% compared to healthy control 
PRP [9]. From a molecular point of view, it’s an old notion that cancer 
cells have also been widely reported to secrete platelet agonists such as 
ADP and thromboxane A2 to induce two different pathways for platelet 
aggregation [10,11] and conversely platelet receptor P2Y12 was found 
to influence mechanisms leading to cancer progression as well, mainly 
by regulating tumor cell/platelet interaction and angiogenesis [12].  

Besides, platelets can protect metastatic tumor cells from immune 
surveillance and help them to attach at the endothelium upon their 
arrest at metastatic sites [13]. Platelets and endothelial cells with their 
adhesion properties may facilitate metastasis by augmenting tumor cell 
extravasation which is favoured by irreversible and complete platelet 
aggregation achieved after ATP secretion by platelets granules [14]. 
In this scenario, Wahrenbrock M, et al. demonstrated in vivo that 
tumor metastases were reduced in mice lacking the vascular adhesion 
molecules P- and L-selectin [15] and vascular endothelial growth factor 
(VEGF) released by α-granules of activated platelet was able to promote 
vasculogenesis in the circulation of patients with cancer [16,17].

Von Willebrand factor (VWF) and ADAMTS13 in thrombosis 
and cancer

Endothelial cells, megakaryocytes and platelets synthesize von 
Willebrand factor (VWF), the largest multimeric glycoprotein in 
human blood involved in regulating hemostasis [18-20]. Circulating 
VWF connect at the site of vascular injury in the subendothelial matrix 
by binding the platelet GP Ib-IX-V complex, promoting platelet 
accumulation (i.e. adhesion, activation and aggregation) in the classical 
first wave of hemostasis or primary hemostasis [21-23]. 

After being synthesized, pro-VWF monomers dimerize through 
C-terminal disulfide bonds and a variable number of dimers then 
multimerize through N-terminal disulfide bonds [24,25]. Newly 
synthesized VWF multimers are either constitutively released or stored 
in the Weibel–Palade bodies of endothelial cells and in the α-granules 
of megakaryocytes and platelets before to be constitutively secreted in 
ultralarge VWF multimers (UL-VWF), which are enriched in VWF 
and hyperreactive in their ability to bind platelets [22,26,27]. UL-VWF 
are typically cleaved between tyrosine 842 and methionine 843 amino 
acid residues in the A2 domain of VWF in smaller fragments of 176 
and 140-kDa by VWF-cleaved protease also identified as ADAMTS13 
(a disintegrin-like and metalloprotease with thrombospondin type 1 
motif 13), a Zn2+/Ca2+-dependent metalloprotease [28-31] essential 
for the physiological vascular homeostasis obtained upon VWF 
proteolysis [32]. The detection of VWF plasma level is mainly a reliable 
marker of thrombosis and thromboembolism [33,34]. Moreover, levels 
of plasma VWF are significantly elevated in cancer patients [35,36] 
and associated not only with cancer-associated thrombosis [37], but 
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also with the grade of malignancy, occurrence of metastases and poor 
prognosis [9,38-40]. Undigested UL-VWF were observed in patients 
with disseminated tumors and they result from deficient ADAMTS13 
protease activity. Interestingly, the clinical presence and absence of 
tumor metastases correlated significantly with ADAMTS13 enzymatic 
activities for <15% and >88%, respectively [41]. Some single nucleotide 
polymorphisms (SNP) of ADAMTS13 were associated with a reduced 
protease activity. In particular, the polymorphisms Val154Ile, 
Asp187His, Arg421Cys, Tyr603Cys resulted in 15%, 19%, 24% and 
28%, respectively [42]. Another study confirmed that another SNP, the 
P475S mutation, led to a dramatic decreases in VWF-cleaved protease 
activity [43]. Notably, reduced ADAMTS13 enzymatic activity as well 
as high plasma VWF/ADAMTS13 ratio may serve as an independent 
predictive factor for mortality in patients with advanced Non-Small 
Cell Lung Cancer (NSCLC) [44] . 

Neutrophil Extracellular Traps (NETs) in thrombus 
formation and in cancer dissemination

Neutrophil Extracellular Traps (NETs) formation in a process 
termed NETosis is emerged as a relevant process involved in thrombosis 
and cancer progression. Discovered in 2004 by Brinkamnn and 
colleagues [45], these traps composed by decondensed chromatin and 
extracellular DNA represent an alternative to phagocytosis, by which 
neutrophils are able to kill different microorganisms such as virus, 
bacteria, and fungi through the action of myeloperoxidase, neutrophil 
elastase/histones and calprotectin, respectively [46,47].

Interestingly, a crucial role for NETs was demonstrated in promoting 
thrombosis [48] since NETs can provide a scaffold for platelet and 
red blood cell adhesion and aggregation thus enhancing coagulation 
[49,50]. All the major constituents of NETs that is extracellular DNA, 
histones and protease all have procoagulant properties. Nucleic acids 
activate coagulation through RNA binding to factor XII and XI in the 
intrinsic pathway as well as histones increase thrombin generation in a 
platelet-dependent manner promoting coagulation [51-53].

Several plasma protein important for platelet adhesion and 
thrombus propagation such as fibronectin and VWF may bind to NETs 
[51]. In these respect, it was demonstrated that both these proteins are 
key components of NETs not derived from plasma. In a murine model 
of deep vein thrombosis (DVT), it was observed that citrullinated 
histone H3 (citH3) by Peptidyl arginine deiminase 4 (PAD4) in NETs 
colocalized with VWF, suggesting that this VWF and NETs create a 
complex favoring thrombus growth and stabilization [49]. 

Furthermore, the UL-VWF adhered to the endothelium can bind 
and immobilize the DNA released by NETs acting as a linker between 
leukocyte adhesion to the endothelium and supporting leukocyte 
extravasation and inflammation [54,55].

Monti, et al. discovered fibronectin as a endogenous component 
of NETs [56]. This finding opened an interesting setting in various 
biological processes in which NETs are involved  since the fibronectin 
in the web-like structure of NETs provides specific binding sites for 
several integrins expressed on the plasma membrane of different 
cell types, such as platelets, endothelial cells and cancer cells [56]. 
In this regard, NETs have a key role in cancer progression [57] and 
the presence of fibronectin  in the NETs structure may explain the 
adhesion of cancer  cells of different origin by the expression of  RGD-
binding integrins (specially α5β1 and αvβ3) mediating the entrapment 
onto NETs allowing the first step of the metastatic cascade [58].

In preclinical models of lung and colon cancer, it was demonstrated 
that NETs functionally regulated disease progression and that 
blocking NETosis through multiple strategies significantly inhibited 
spontaneous metastasis to the lung and liver [59]. Moreover, in a 
murine model of infection using cecal ligation and puncture, NETs 
deposition drove the entrapment of circulating lung carcinoma cells 
associated with increased formation of hepatic micrometastases at 
48 hours after tumor cell injection. These effects were abrogated by 
NETs inhibition with DNAse or a neutrophil elastase inhibitor [60]. 
Neutrophils from mice with chronic myelogenous leukemia were 
prone to generate extracellular DNA traps and extracellular chromatin 
released through NETs formation was demonstrated to be the source 
for cancer-associated thrombosis [61]. 

Since the regulation in size of UL-VWF multimers by ADAMTS13 
is a relevant mechanism to control invasion of PMNs and higher 
perivascular leukocyte infiltration was observed in ADAMTS13−/− mice 
[62], it would be interesting study the correlation between ADAMTS-13 
genetic polymorphisms and its reduced enzymatic activity. This should 
imply accumulation of UL-VWF multimers and also an improved 
leukocyte infiltration more prone to NETosis. In turn these events 
could drive NETs-dependent cancer-associated thrombosis and tumor 
progression.

Conclusion 
In the tumor microenvironment, a clear correlation between NETs 

and VWF is established and the optimal strategy would be a therapy 
able to target NETs and inhibit its dual role as fuel of the the metastatic 
dissemination and as trigger of thrombus formation after entrapping 
cancer cells in the blood vessels lumen. 
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