Neutrophilic progression in the myeloproliferative neoplasms: molecular insights and potential therapeutic implications

Stephen E Langabeer*
Cancer Molecular Diagnostics, St. James’s Hospital, Dublin, Ireland

Disease evolution of the classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) usually manifests as either myelofibrotic transformation of polycythemia vera (PV) and essential thrombocytocmia (ET) or to a blast crisis resembling acute myloid leukemia (AML) that can occur in PV, ET or primary myelofibrosis (PMF) [1,2]. An alternative but less well documented course is that of neutrophilic progression. Throughout the literature there exist sporadic case reports of PV, or more rarely PMF, progressing to or terminating in a marked hyperleukocytosis often resembling chronic neutrophilic leukemia (CNL) which and which have exhibited a poor overall survival [3-10]. Since the discovery of activating mutations of exons 14 and 17 in patients with CNL [11], it has become clear that these mutations are now considered a hallmark of CNL with identification rapidly borne out by some clinical evidence of efficacy [14-16].

Two recent case studies have illuminated the molecular basis of this rare neutrophilic progression. A patient with longstanding JAK2 V617F-positive PV developed a BCR-ABL1-negative hyperleukocytosis without bone marrow dysplasia, fibrosis, or an increase in myeloblasts, mimicking CNL but with a persistence of morphological features of the underlying PV. Sanger sequencing of CSF3R exons 14-17 did not detect any mutations [17]. A next-generation sequencing targeted for myeloid malignancies was applied to sequential samples from a V617F-positive PMF patient undergoing such a neutrophilic progression. This approach again did not again detect any mutations in CSF3R exons 14 and 17 but demonstrated acquisition of a single NRAS mutation coinciding with the hyperleukocytosis, independent of a stable JAK2 V617F allele burden [18]. The RAS/RAF/MEK pathway interacts with JAK/STAT signalling and is necessary for G-CSF directed proliferation in normal haemopoiesis. Regulation of MEK activity is central to JAK/STAT signalling and is necessary for G-CSF directed proliferation in normal hematopoiesis. Regulation of MEK activity is central to the equilibrium between proliferation and differentiation responses to G-CSF and therefore constitutes a therapeutic target in this case of neutrophilic progression. Clinically available inhibitors of MEK, such as trametinib, have exhibited some effectiveness in NRAS mutated myeloid malignancies [19] and in a rare case of hyperleukocytosis in a patient with NRAS mutated atypical chronic myeloid leukemia [20].

The possibility therefore exists that those historical CNL JAK2 V617F-positive cases might represent patients with polycythemia vera or primary myelofibrosis presenting in this terminating neutrophilic stage [21-23]. Incidental evidence supporting this speculation comes from the favorable clinical response of sporadic JAK2 V617F-positive CNL patients treated with interferon and hydroxyurea: agents with proven efficacy in the classical MPN [24-26].

Evaluation of the molecular landscape by next-generation sequencing approaches in such uncommon MPN evolution events therefore has the capacity to reveal the underlying molecular landscape and potentially provide targets for specific inhibitors. However, it must also be appreciated that epigenetic and germ line factors also play a role in MPN development and progression. Further understanding of this rare neutrophilic progression of MPN will come from recognition and investigation of additional cases.

Authorship and contributorship
The author is the sole contributor to the article.

Acknowledgements
None

Funding
None

Competing interests
The author declares no competing interests

References

Correspondence to: Stephen E Langabeer, Cancer Molecular Diagnostics, Central Pathology Laboratory St. James’s Hospital, Dublin 8, Ireland, Tel: +353 1 4103576; Fax: +353 1 4103513; E-mail: slangabeer@stjames.ie

Key words: mutations, myeloproliferative neoplasms, neutrophilic progression, targeted therapy

Received: December 03, 2017; Accepted: December 22, 2017; Published: December 26, 2017


