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Abstract
In 1989-1991, George Zhu first postulate oncogenic receptor (Voice of America,1992,12:31;Curr Pharm Biotechnol,2013,14:859-863), as a result of his experiments 
in which steroid PML-RARa fusion receptor gene rearrangement within it(15;17) translocation in acute promyelocytic leukemia (APL),  FGFR-1) receptor induced 
tumours of the breast glands in two aplastic anemia during the course of testosterone treatment (hormonal tumorigenesis). In the past 2-3 decades, there are at least 
30 receptor genes involving in various of oncogenic process. These normal physiologic receptors linked to gene amplification, rearrangement, deletion and activating 
mutations, which converted receptor to oncogenic (also oncogenic receptor) in development, progressive and pathogenesis of benign and malignant diseases. Receptors 
included nuclear receptor family members (oncogenic estrogen/estrogen receptor alpha signaling, oncogenic androgen receptor, oncogenic receptor pml/RARa, and 
GRβ); Oncogenic growth factor receptors (EGF/oncogenic receptor EGFR, Neu oncogenic receptor, insulin receptor substrate 4 IRS4/insulin receptor/c-ros proto-
oncogenic receptor, insulin and IGF-1 and -II/oncogenic IGF-1R, oncogenic PDGFAR, oncogenic TEL/PDGFRB, HGF/HGFR、met oncogenic receptor); 
Cytokine receptor rc family members (IL-2-BCM fusion,IL-3/oncogenic IL-3Ra,IL-7/oncogenic IL-7R and IL-21R-BCL6 fusion); Cytokine receptors including 
the βc family (G-CSF/oncogenic CSF3R,oncogenic EPOR), and oncogenic autocrine growth hormone/nuclear GHR and other VEGFR2. Upon ligand binding or 
external antigen stimuli, mutated growth factor receptors and mutant cytokine receptors including type I cytokine receptor may be activated via ligand binding receptor 
complex, receptor dimerizes especially receptor homodimerization, and induces transphosphorylation of tyrosine residues in the cytoplasmic domains which serves 
as docking sites for several adaptor molecular harboring SH2 domain or phosphotyrosine binding domain. These adaptor molecules recruit and activate downstream 
signaling molecules such as Ras/MAPK, phospholipase C-r,JAK-STAT molecules, NF-KB pathways through tyrosine- or serine/threnonine-phosphorylation. 
Among them, Ras /MAPK/ERK, PI3-K/akt and STAT pathways act as the major oncogenic signaling pathway. Overall, these receptors coupled with their ligands 
are key importance in human subtle balance in physically regulating multiple cellular processes, for example, in cellular proliferation and differentiation. Oncogenic 
receptors mutational activation and/or aberrant gene rearrangement are promiscuously interference with normal cell survival, anti-apoptosis and proliferation, and 
malignant initiation and progression. Others, in a special APL case, oncogenic pml/RARa fusion behave as a potent (constitutive) transcriptional repressor of RAR 
and retinoic acid signaling, inducing a differentiation blockage at promyelocytic stage which can be overcome with therapeutic doses of 9-cis retinoic acid or ATRA 
ligand (see in detail model, George Zhu, January 1991. Curr Pharm Biotechnol, 2013, 14: 849-8E). This is the classical model of retinoic acid action. This encourage 
receptor normal agonist, and oncogenic receptor antagonists (or inhibitors) target therapy.
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Introduction
Since introduction of oncogenic receptor concept by George Zhu 

from oncogenic pml/RARa fusion in etiology of a specific APL and 
androgen/androgen receptor oncogenic signaling in role of hormonal 
tumorigenesis in early 1989s [1-7], de The H and Chomienne C [8,9], 
at the same peroid, found that in t(15;17) APL the translocated retinoic 
acid receptor alpha (an RAR mutant) contribute to leukemogenesis. 
Neil JC [10] is in detail receptor-mediated leukaemogenesis from 
the oncogenic function of T cell antigen receptor (TCR oncogenic 
signal) on lymphoid cells not only bind external ligand but are crucial 
in cellular proliferation. In transgenic mice expressing a mutated 
TCRbeta lacking the variable chain (Detta V-TCRbeta) developed 
CD+, CD8+, IL-2Ra positive T-cell lymphoma [11]. Patients with 
ataxia-telanglectasia are particularly prone to development of T-cell 
chronic lymphocytic leukemia with chromosomal abnormalities. The 
breakpoint is composed of a TCR J alpha chain region (from 14q11) 
fused to sequences derived from 14q32 but on the centromeric side 
of the IgCmu (IgH), indicating that a 14:14 translocation [t(14;14)
(q11;q32); inv(14)(q11;q32)] in the development of T-cell tumors [12-
13]. Like mutated oncogenic growth factor receptors [14], antigen- 

independent B cell receptor (BCR) signaling drives the oncogenic 
process. The genetic defects in heavy-chain disease(HCD) result in the 
production of abnormal membrane-associated heavy chain lacking an 
antigen-binding domain, these aberrant B-cell antigen receptors might 
engage in ligand-independent signaling, indicating a role in the genesis 
of HCD neoplasia [14-15].

Yarden Y [16] proposes neu oncogenic receptor from neu oncogene-
related receptor tyrosine kinase (RTK), and this might be useful in neu 
oncogenic receptor [17-21] antagonists lapatinib and trastuzumab 
target therapy in metastatic breast cancer with HER2V659E mutation 
[22]. In a large trials of 48 HER2-positive early breast cancer patients, 
the adjuvant trastuzumab treatment demonstrates highly favorable 
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outcome. Five-year overall survival rates and disease free survival 
rates were 95.8% and 93.8% respectively. Al-Nedawi [23] explore 
the area that microvesicles containing oncogenic receptor EGFRVIII 
released to cellular surroundings and blood of tumour-bearing 
mice, and can merge with the plasma membranes of cancer cells 
lacking EGFRVIII. This intercellular transfer of membrane-derived 
microvesicles (‘oncosomes’-small plasma membrane buds, Robinson, 
[24]) leads to the transfer of oncogenic activity including activation of 
MAPK and Akt and autocrine activation of its key signaling receptor 
(VEGF receptor-2), and increases in anchorage-independent growth 
capacity. Santos [25] studies oncogenic GRPR (gastrin-releasing 
peptide receptor) in neoplastic multiple signaling pathway. Somatic 
mutations in cholecystokinin 2 receptor(CCK2R) alter receptor 
activity that promote oncogenic phenotype, and the importance of 
evaluating CCK2R inhibitors to block mutant forms of this receptor 
[26]. Intriguing, epithelial cell adhesion molecule (EpCAM), as a 
homophilic adhesion protein, is a novel oncogenic receptor which 
frequently overexpressed in epithelia, progenitors, embryonic stem 
cells, carcinoma and cancer-initiating cells, and target its antibodies 
[27]. The present will in brief focus on recent innovative diagnostic and 
therapeutic strategies forthcoming in this area.

Steroid hormone receptors oncogenic signaling
The estrogen receptor(ER) is found in a wide variety of species 

and is involved in the programming and regulation of gene expression 
in vertebrate female sex-accessory tissue [28]. Estrogen E2/ERa 
signaling plays an important role in the regulation of mammary gland 
development and function, and also contributes to the onset and 
progression of breast cancer. More than 70% of human breast cancers 
express ERa, and elevated levels of ERa in benign breast epithelium 
correlate with increased risk of breast cancer [29]. Green S and 
Chambon P [28] described oncogenic hormone receptor from human 
oestrogen receptor cDNA sequence. This carcinogenicity of estrogen 
is attribute to receptor-mediated stimulation of cellular proliferation. 
Increased proliferation could result in turn in accumulation of genetic 
damage and stimulation of the synthesis of growth factors that act 
on the mammary epithelial cells via an autocrine or paracrine loop 
[30]. There were evidence that estrogen-dependent cell line(MCF-7) 
cells under estradiol(E2) stimulation release some known polypeptide 
growth factor activities (EGF-like, IGF-1-like) [31]. Dickson RB and 
Stancel GM [32] discuss estrogen receptor-mediated processes in 
normal and cancer cells. ER-mediated regulation of gene expression 
plays many significant roles in normal and cancer cells and this will 
improve the understanding of hormonal carcinogenesis.

Furthermore, Russo [33], Santen, et al. [34], Yager and Yue [35] 
discussed estrogen receptor-dependent and independent mechanisms 
of breast carcinogenesis. ERa mediated stimulation of breast cell 
proliferation with a concomitant enhanced rate of mutations, and 
estradiol metabolites to genotoxic DNA mutation cause DNA 
damage. Thus, ERa function as estrogen activated transcription 
factor and involved in the stimulation of estrogen target genes in the 
regulation of cell cycle progression and growth of breast epithelium 
[36]. As Clarke described [37], some ERa/PR-positive epithelial cells 
are quiescent breast stem cells that acts as ‘steroid hormone sensors’. 
Such hormone sensor cells are likely to secrete positive or negative 
paracrine/juxtacrine factors dependent on the prevailing estrogen or 
progesterone concentration to influence the proliferative activity of 
adjacent ERa/PR- epithelial cells. This might represent one step toward 
the development of neoplasia and malignancy-invasive tumors.

Utilizing ERKO/wnt-1 oncogene mice [38] and aromatase/ERKO 
transgene mice [39], they demonstrated the role of ERa-dependent in 
mammary development and carcinogenesis. Lack of ERa mice results in 
impaired mammary development and much delayed tumor incidence 
even in the presence of tissue estrogen (50% of mammary tumors at 
5 months in ER-positive animals versus 11 months in those without 
ERa). Whereas introduction ERa into the tTA/TAg mice [40] and 
DES-treated MT-mER transgene mice [41,42] developed mammary 
adenocarcinoma (at 8months) and preneoplastic lesion atypical 
hyperplasia (at 4 months), which implicate that ERa contributes to 
carcinogenic through ER-mediated signal transduction, increasing 
estrogen-responsive cell proliferation, and ERa signaling in mammary 
cancer initiation and progression.

Moreover, mutations in estrogen receptor converted estrogen 
receptor-dependent breast tumor into estrogen-independent growth 
[43]. Fuqua [44] found a K303R estrogen receptor alpha (ERa) 
mutation in human premalignant breast lesions. The K303R mutation 
formed tumors in nude mice faster than cells expressing wild-type ERa 
in the presence of low levels of estrogen (at 10-12 M estradiol), and 
those K303R ERa-expressing tumors are estrogen-independent growth 
[45]. From screeing of those ER+ breast cancer, Veeraraghavaa and 
colleagues [46,47] detected oncogenic ESR1- CCDC170 fusion positive 
tumors. This neoplastic ESR1-CCDC170 fusion leads to anchorage-
independent growth, reduced endocrine sensitivity and enhanced 
xenograft tumor formation, suggesting a new concept of this oncogenic 
receptor ESR1 fusion in pathobiology in a more aggressive subtype of 
breast cancer.

Thus far, in addition to tamoxifen and fulvestrant, AZD9496, a non-
steroid small molecule inhibitor of oncogenic (or neoplastic, due to not 
targeting normal ERa) Era [2,29,40,41,48], bound and down-regulated 
clinically relevant ESR1 mutants in vitro and inhibited tumor growth in 
an ESR1 mutant patient-derived xenograft model that included a Y537 
and D538G mutation [49,50]. AZD9496 is currently being evaluated in 
a phase I clinical trial [50].

Using heterotypic tissue recombination, Cunha [51] 
established a stromal androgen receptor for mesenchymal-
epithelial transition(EMT) in normal androgen-dependent prostate 
development and in the etiology of benign prostatic hyperplasia [52]. 
By different methods including immortalized human prostate cells 
expressing androgen receptor [53] and androgen receptor transgene 
[54], they demonstrated that androgen receptor is oncogenic, and this 
oncogenic receptor induces prostate intraepithelial neoplasia(PIN) and 
plays a crucial role in transforming process in prostate cells. The AR-
expressing PrECs are dependent on circulating testosterone for tumor 
growth, and immortalized PrECs lacking AR failed to form tumors. 
But this androgen receptor is difficult to characterize as an oncogene 
[53]. Mononen [55] and Koivisto [56] detected the R726L mutation of 
androgen receptor (AR) in Finnish patients with sporadic or familial 
prostate cancer, which may confer an up to 6-fold increased risk of 
a small fraction of prostate cancer in Finlan. T877A mutation of AR 
was identified in LNCaP cell line and metastatic cells of androghen-
independent prostate cancer [57-63], whereas V739M was identified 
in early stage PCa [64]. Nyquist [65] discovered intragenic AR gene 
rearrangements in CRPC tissues, rendering expression of truncated AR 
variants proteins lacking the AR ligand-binding domain, constitutive 
activity of AR, and intragenic ARv567es cDNA formed tumor faster 
rate and a CRPC growth independent of full-length AR or androgens. 
Therefore, targeting oncogenic AR variants [3,53,66-70] (here, please 
note that it is no need to target a normal AR) includes AR antagonists 
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bicalutamide and enzalutamide, which might provide an approach 
to suppress prostatic intraepithelial neoplasia(PIN) development. In 
phase II trials, the CBR (clinical benefit rate) of 19% was observed with 
bicalutamide 150 mg daily dose in selected patients with androgen 
receptor-positive, estrogen receptor-negative metastatic breast cancer 
[71].

In another area, increased thyroid diseases and thyroid papillary 
carcinoma (PTC) associated with a high dietary iodine intake [3,72-81]. 

 GRβ/STAT-5 pathway was found to be involved in erythrocytosis 
[82], and GR/SGK1 (including GR-SGK1-FOXO3a signaling pathway 
and GR-SGK1-MKP1/DUSP1 pathway) network linked to higher 
tumor grade and antiapoptotic and increased cancer recurrence 
[83-85]. Moreover,the aberrant glucocorticoid receptor signaling 
in breast cancer [86-89], prostate hyperproliferation [85,90,91], 
Cushing’s disease [92] and Nelson’s syndrome [93]. Thus, GR 
activation is sufficient to provide a potent signal for cell survival in 
mammary epithelial cells. Induction of serum and glucocorticoid-
regulated kinase-1 (SGK-1) expression is required for GR-mediated 
epithelial cell survival signaling. SGK-1 is a direct GR target and 
encodes a serine-threonine kinase with significant homology to Akt-
1. In immunohistochemical analysis, nucleus GR-immunostaining and 
glucocorticoid receptor (GR)- immunopositive cells were abundantly 
present in subclinical Cushing’s disease due to pituitary adenomas 
(2 macroadenomas and 8 microadenomas), suggesting impaired 
glucocorticoid action, at least in part, in tumorigenesis of this disease 
[92]. RU486(mifepristone), a glucocorticoid receptor antagonist, has 
been successful treatment of the Cushingoid phenotype with markedly 
elevated lymphocyte glucocorticoid receptor numbers in a transient 
Cushing’s syndrome [94]. Mifepristone may also be a useful strategy 
for increasing tumor cell apoptosis in chemotherapy-resistant GR+ 
triple- negative breast cancer(TNBC) [95]. In addition, the cortisol/
cortisone-responsive AR (AR(ccr)) has two mutations (L701H and 
T877A) that were detected in the MDA PCa human prostate cancer 
cell lines established from a castrated patient whose metastatic tumor 
exhibited androgen-independent growth. GR antagonist RU38486 
showed inhibitory activity [90], but its therapeutic application to 
treat prostate cancer may be limited. Thus, the combination of ARccr 
receptor antagonists bicalutamide (casodex) together with a ligand 
suppressor(triamcinolone) represents a new therapeutic strategy for 
the treatment of the subset of androgen-independent prostate cancers 
harboring the L701H or ARccr type.  

So far, there is a conflict among hormone FSH/FSH receptor in 
etiology of epithelial ovarian cancer [96,97]. Actions of FSH (follicle-
stimulating hormone) in reproductive physiology are essential for 
folliculogenesis and steroidogenesis [98], FSH receptor (FSHR), 
a transmembrane receptor with a G protein-coupled signaling, 
is expressed by granulosa cells in developing ovarian follicles. 
Overexpression of FSHR activates oncogenic pathways through FSHR-
induced EGFR amplification, and HER-2/neu and activated ERK1/2 
in preneoplastic immortalized ovarian surface epithelial(IOSE) cells 
[99]. The data by epidemiological studies that an increased occurrence 
of ovarian cancer has been suggested with exposure to high levels of 
gonadotropins during postmenopause or infertility therapy [100-102]. 

Retinoids can regulate proliferation and differentiation of normal 
myeloid cells, and that supraphysiological levels of retinoic acid (9-
cis RA or all-trans RA) can induce abnormal promyelocytes toward 
maturation. These leukemic cells harboring steroid PML-RARA 
translocation play a central role in etiology of APL [4,8,9,103]. The 

PML-RARa chimera can function as a strong transcriptional repressor 
of retinoic acid (RA) signaling and RAR function by pertubing normal 
retinoid signaling, leading to a block in differentiation and in an 
accumulation of leukemic cells at promyelocytic stage [4,6,103-115]. 
This oncogenic receptor is locked in its “off” regulated mode thereby 
constitutively repressing transcription of genes or key enzymes that are 
critical for differentiation of hematopoietic cells [4,116]. Moreover,the 
PML-RARa apparently involved in part the defects in ability to 
release corepressor under physiological hormone concentration. 
The wild-type RARa readily form heterodimer with the retinoid 
X receptors(RXRs). In contrast, chimeric pml/RARa oncoprotein 
exhibited an enhanced ability to bind to DNA as homodimer. This 
enhanced homodimerization by RAR chimeras implicates in aberrant 
corepressor interaction properties of these oncogenic receptor 
derivatives, influences their DNA recognization, and appears to prevail 
in neoplastic cells of these oncoproteins [103]. These differences in 
target gene recognition by the normal and oncogenic RARa protein 
may contribute  to the leukemogenic  phenotype [103].

Targeting oncogenic growth factor receptors
The EGF receptor(EGFR) [117] has a key role in normal embryonic 

development, adult tissue hemeostasis and many pathological 
processes, particular tumor formation. Aberrant EGFR activation 
becomes oncogenic due to overexpression and/or amplification of the 
EGFR gene or by autocrine/paracrine growth factor loops, whereas 
activating dimerized mutations promote EGFR signaling, which lead 
to ligand-independent [118,119]. Phosphorylation of this oncogenic 
receptor at residues Tyr845, Tyr1045 and Tyr1173 leads to receptor 
activation and downstream signaling [120,121]. Oncogenic receptor 
EGFR [2,5,7,119,122-124] was found to involved in A431 human 
carcinoma cells [125-128], squamous cell carcinoma (SSC) [129], 
epithelial cell lines from mammary carcinoma [130], glioblastoma 
stem cells [5,131,132,EGFR+++ positive in one glioma, George Zhu], 
and colorectal carcinoma tissue[133]. Oncogenic EGFR mutations are 
found in 10% to 35% of lung adenocarcinomas, with predominant in 
a subset of patients with non-small cell lung cancer (NSCLC) [134-
136]. These mutations, which commonly occur as either small in-
frame deletions in exon19 or point mutations T790M and L858R in 
exon21 within the EGFR tyrosine kinase domain, confer constitutive 
activity and sensitivity to EGFR tyrosine kinase inhibitors(TKI) 
[137,138]. Recent, Gallant [137] identified a novel EGFR alteration 
in lung cancer: EGFR exon18-25 kinase domain duplication(EGFR-
KDD). EGFR-KDD is oncogenic and oncogenic EGFR-KDD-
transformed cells are sensitive to the EGFR TKI afatinib. Konduri and 
colleagues [138] reported five patients with metastatic lung cancer 
whose tumors harbored EGFR fusion, most commonly RAD51, are 
recurrent in lung cancer. Four of whom were treated with EGFR 
TKI erlotinib with documented antitumor response for 5,6,8, and 20 
months respectively. These patients whose tumors harbored EGFR 
fusions are oncogenic in preclinal studies. In mouse model, transgenic 
mice expressing EGFR L858R in type II pneumocytes developed 
atypical adenomatous hyperplasia and multifocal adenocarcinoma, 
and gefitinib inhibited tumorigenesis completely [139]. Blesa [140] 
present a durable complete remission of a relapsed glioblastoma with 
a complete radiologic response and the combination of cetuximab and 
bevacizumab in a third-line setting, that has offered a progression-free 
survival of 20 months. In Cuba, CimaVax-EGF, promising, an active 
vaccine targeting EGF as the major ligand of EGFR, it is in use as a 
cancer therapy against non-small-cell lung cancer (NSCLC) [141,142].
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PDGFRa mutations are oncogenic(tumorigenic) and developed 
100% of mice with brain tumors whereas only one of 19 mice 
implanted with cells overexpressing wild-type PDGFRa developed into 
brain tumor in vivo [143]. This D842V mutant was effectively inhibited 
by crenolanib, a specific inhibitor of PDGFRa and PDGFRβ. Golub 
[144] identified that PDGF receptor β is oncogenic in pathogenesis 
of chronic myelomonocytic leukemia with t(5;12) chromosomal 
translocation, targetable oncogenic receptor tyrosine kinases PDGFRa/
PDGFRβ, and FGFR fusions [145-147] in diverse cancers have made 
some major progress. For example, these hypereosinophilia (HES) 
patients with FIP1L1/PDGFRA have excellent responses to imatinib 
treatment [148-153]. At present, Imatinib, a selective inhibitor of ABL, 
KIT, and PDGFRA/B, is the first line target therapy for gastrointestinal 
stromal tumor (GIST) [154].

Hepatocyte growth factor (HGF), like other growth factors, 
has different effect in different cells. HGF regulates cell growth, cell 
mortality and morphogenesis by acting a tyrosine signaling cascade 
after binding to the proto-oncogenic receptor for HGF (HGFR, also 
proto-oncogenic receptor c-met, met receptor) [155-158]. HGF 
enhances hepatocyte growth, potently suppresses apoptic death of 
hepatocytes and decreases serum bilirubin and serum ALT (alanine 
aminotransferase), which provide therapeutic action of HGF, including 
severe hepatitis, falminant hepatic failure [159] and liver cirrhosis 
[160].

HGF-HGF receptor (met oncogenic receptor) signaling stimulate 
growth of mouse C127 cells transformed phenotype [161], Caki-1 (a 
human kidney clear cell carcinoma cell line), U87-MG (a glioblastoma 
cell line) [162], canine osteosarcoma cells [157], and human 
hepatoblastoma cells [163], and AML [164].

In vitro HGF can transform immortalized mouse liver epithelial 
cells [165]. Serum HGF levels are elevated in patients suffering from 
chronic hepatitis and liver cirrhosis. Moreover, hepatocytes from 
transgenic mice expressing HGF grew more rapidly than did those 
from normal siblings. In vivo, Fao HGF cells produced tumors when 
transplanted into nude mice [166]. These conditions cause persistent 
hepatocellular damage and regeneration; consequently, there are 
associated with the subsequent of hepatocellular carcinoma(HCC). 
Thus, HGF-HGF receptor signaling might play an important role in 
carcinogenesis [163,167]. PRS-110 (starting at 0.8 mg/kg and going 
up to 30 mg/kg) specifically binds to Met receptor with high affinity 
and blocks HGF interaction on ligand-dependent (U87-MG) and 
ligand-independent (Caki-1) xenograft model [162]. Animals were 
randomized for the treatment with a novel met inhibitor EMD1214063 
(50 mg/kg/d), which resulted in a complete regression of the sensitive 
H1112L met variant-derived tumors[168]. Foretinib, the first multi-
target c-met TKI to under clinical investigation, produced a promising 
benefit in HCC patients [163]. Recently, the chemically-modified 
monovalent antibody DN30 was found to inhibit ligand- independent 
activation of the met oncogenic receptor, providing an another target 
therapy [169-171].

Cytokine receptors had oncogenic mutant variants in 
cancer

Growth hormone(GH)/oncogenic GH receptor(GHR) [171-
174] was associated with growth hormone receptor deficiency [175]; 
gigantism, acromegaly and cancer risk [176-180]; GHR determines 
‘cancer- like’ features [174]. And GH-releasing hormone GHRH/
GHRH receptor oncogenic signaling [181,182]. Insulin/insulin 

receptor/Ros proto-oncogenic receptor homologue, and IGF-
I,IGF-II/oncogenic receptor PTK IGF-IR linked to physiology and 
diseases(short statuse, oncogenic transformation process) [182-187]; 
and IGF-I (Mecasermin) replacement therapy [189-191]. Interesting, 
the oncogenic mechanism in Ewing sarcoma harboring oncogenic 
EWS/NR4A3 fusion involves a novel pro-oncogenic IGF/IGF-1 
receptor signaling pathway including post-transcriptional depression 
of IGF signaling by the EWS/Fli1 fusion oncoprotein via miRs [192], 
and this provide therapeutic targeting anti-IGF-1 receptor antibody in 
Ewing Sarcoma [193-195].

G-CSF has been used in clinic for more than 2 decades to treat 
congenital and acquired neutropenias [196-200]. It is highlight the 
clinical application of G-CSF to children with severe congenital 
neutropenia(SCN) and especially in patients with neutropenia 
harboring in the G-CSF receptor(CSF3R) gene, which is correlated 
to an increased risk for development of MDS and acute myeloid 
leukemia(AML) [201]. There are two classes of CSF3R mutant variants: 
truncations of the cytoplasmic domain [202,203] and membrane 
proximal point mutations including T618I [204]. Truncated CSF3R 
mutations are the mutant type nearly almost observed in SCN and 
abnormal signaling of this oncogenic receptor variants in malignant 
transformation, whereas membrane proximal mutations (particularly 
T618I) are the predominant mutation type observed in chronic 
neutrophilic leukemia(CML) and atypical (BCR-ABL negative) chronic 
myeloid leukemia (aCML), and confer ligand-independent growth 
[204]. Maxson and colleagues [205] identified activating mutations 
for CSF3R in 59% (16/27) of patients with CNL or atypical CML. In 
vivo, the activating mutation in the CSF3R gene induces hereditary 
chronic neutrophilia [206]. Mice transplantanted with CSF3R T618I-
expressing hematopoietic cells developed a myeloproliferative disorder 
[204]. Treatment with the JAK inhibitor ruxolitinib lowered the white 
blood cells and reduced spleen weight. These results indicate that 
activating mutant CSF3R is oncogenic [205] and sufficient to drive a 
myeloproliferayive disorder resembling CML and CNL that is sensitive 
to pharmacologic JAK inhibition [204].

Another more example is that a translocation t(14;19) (q32;P13) 
was involved IGH@ and the cytokine receptor EPOR at 19P13 in two 
patients with B-cell precursor acute lymphoblastic leukemia (BCP-
ALL) [207,208]. An over 230- and 241-fold increase in the expression 
of EPOR were observed in 2 patients at diagnostic and relapse samples 
respectively. The EPOR-IGH/IGK chain fusions result in truncation of 
the cytoplasmic tail of EGFR at residues similar to the mutant EPOR 
in PFCP, with preservation of the proximal tyrosine essential for 
receptor activation and loss of distal regulatory residues. Expression 
of truncated EPOR in mouse B cell progenitors induced ALL in 
vivo. The data implicate oncogenic erythropoietin receptor in role 
of both benign erythrocytosis and malignancy [209,210]. Moreover, 
mutation of erythropoitin receptor (EPOR) gene was associated with 
primary familial and congenital polycythemia(PFCP).Truncated 
mutations of 59 to 84 amino acids of EPOR at c-terminus lead to loss 
of the intracellular cytoplasmic tail of the receptor, and prolonged 
proliferative signal resulting in hypersensitivity (5-10 fold increased 
sensitivity) to erythropoitin, and prolonged activity of JAK2 kinase 
and STAT5 activity [211-214].The leukemic cells with oncogenic 
EPOR fusions were sensitive to JAK-STAT inhibition, suggesting a 
therapeutic option in high-risk ALL.

Accumulated studies, constitutive activation of cytokine 
interleukin-2(IL-2) gene can induce autocrine growth of IL-2-
producing leukemic cells in adult T-cell leukemia [215], in vitro 
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transformation and tumorigenicy of T cells [216-219], and tumor cells 
bearing IL-2-BCM fusion in a T cell lymphoma with t(4;16)(q26;p13) 
translocation [220]. IL-2 binds to IL-2 receptor a(IL-2Ra) and rc 
subunit of the IL-2 receptor(IL-2RG) sharing with other cytokine 
receptor superfamily (including IL-7 receptor, IL-21 receptor) that 
receptor complex transduces growth and differentiation signals [221]. 
Under physiological condition, IL-2 appears to act on antigen-specific 
proliferation of T lymphocytes, immune thymocytes, B-lymphocytes, 
natural killer cells(NK cells) and lymphokine-activated killer cells(LAK 
cells),which linked to adoptive immune therapy [222].

In vitro nude mice, fibroblasts transfected with a chimera molecule 
containing the extracellular IL-2 binding domain of the IL-2R cDNA 
and the transmembrane and intracellular kinase domain of the EGF 
receptor cDNA, were morphologically transformed and produced 
rapidly growing tumor [223]. Moreover, retroviral expression of IL-
2RG restore signaling by IL-7 receptor to X-SCID precursor cells 
in T-cell progression to the pro-leukemic effects of ectopic LMO2 
[224]. Recently, the chromosomal translocation t(5;9) (q13;q22) in 
peripheral T cell lymphoma generating the interleukin 2 inducible T 
cell kinase(ITK)-spleen tyrosine kinase(SYK) fusion kinase mimics a 
T-cell receptor signal and drives oncogenesis in mouse models.

Activation of the interleukin-3(IL-3) gene by the enhancer of the 
IgH fusion leads to the overexpression of IL-3 gene product in 2 cases of 
acute lymphocytic leukemia with t(5;14)(q31;q21) translocation[225]. 
Serum IL-3 correlated with the clinical cause. When the patient’s 
leukemic cell burden was highest (WBC 116,500/ul, lymphoblasts 
33,785/ul), the serum IL-3 level was highest (799,5 pg/ml);whereas 
complete remission(WBC 123,00/ul, lymphoblasts 0/ul), serum IL-3 
levels decreased to 105,1 pg/ml. Therefore, overexpression of IL-3 gene 
coupled with the presence of aberrant IL-3 receptor in these cells could 
account for oncogenic effects for proliferatative advantage and may 
play a central role in the pathogenesis of leukemia [225,226]. Aberrant 
presence of cysteine residues was shown to induce homodimerization 
of mutant interleukin-7 receptor(IL-7R), which drive constitutive 
signaling via JAK1 and independently of IL-7, rc or JAK3[227], 
promoting cell transformation. This abnormality is involved in -10% 
human pediatric T-cell leukemogenesis, paving tthe way for therapeutic 
targeting oncogenic IL-7R-mediated signaling in T-ALL [228-230]. 
Interleukin-21 receptor (IL-21R) is capable of signal transduction 
through homodimerization or potentially heterodimerization with IL-
2R gamma. IL-21 and IL-21R not only regulates proliferation of mature 
B cells and T cells in response to activating stimuli but also mediate 
expansion of NK population from bone marrow. The gene for IL-21R 
is found the partner of BCL6 in t(3;16)(q27;p11),which is recurrently 
observed in diffuse large B-cell lymphoma and a lymphoma cell line 
YM [231].This IL-21R/BCL6 fusion gene is clearly associated with 
lymphoid cell origin.

Conclusion  
To date, antibodies that target oncogenic receptors are often 

targeted toward lysosome [232] or blockade of translocation from the 
endoplasmic reticulum to the cell surface of specific antigens such as 
vascular endothelial growth factor receptors(VEGFR2) or Tie2 [233]. 
For instance, targeting cells with biotinylated ligands and addition 
of streptavidin efficiently targets trastuzumab to lysosome and this 
crosslinking of trastuzumab increased lysosomal degradation of its 
cognate oncogenic receptor Her2 in breast cancer cell lines [232]. 
Another burgeoning class of targeted chemotherapies called antibody-
drug conjugates(ADCs).This ADCs that have demonstrated sufficient 

efficacy to gain and retain clinical approved are ado-tratuzumab 
emtansine (brand name Kadcyla) and brentuximab vedotin (brand 
name Adcetris) [234]. The auristatin-based antibody-drug conjugate 
BAY1187982 is for the treatment of FGFR2-positive solid tumors 
[195]. Another, the nicotinic acetylcholine receptor a7- nAchR 
(toxicology) is the oncogenic receptor, which mediated nicotine(NNK 
and NNN) oncogenic signaling in an important role in the initiation 
and progression of cancer including lung cancer and this oncogenic 
response was in parallel with the mutagenic and cytotoxic effects of 
tobacco smoke to promote the growth and angiogenesis of the tobacco 
related cancers [235]. Thus nAchRs yield new targets for the prevention 
and treatment of tobacco related cancers. Therefore, downregulating 
oncogenic receptors may be useful paradigm and perspective in our 
better understanding of clinical cancer biology [236-258].
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