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Abstract
Human mesenchymal stromal cells (MSC) have been shown to support the growth and differentiation of hematopoietic stem cells (HSC). We hypothesized that 
intra-osseous (IO) co-transplantation of MSC and umbilical cord blood (UCB) may be effective in improving early HSC engraftment, as IO transplantation has been 
demonstrated to enhance UCB engraftment in NOD SCID-gamma (NSG) mice. Following non-lethal irradiation (300rads), 6 groups of NSG mice were studied: 
1) intravenous (IV) UCB CD34+ cells, 2) IV UCB CD34+ cells and MSC, 3) IO UCB CD34+ cells, 4) IO UCB CD34+ cells and IO MSC, 5) IO UCB CD34+ cells 
and IV MSC, and 6) IV UCB CD34+ and IO MSC. Analysis of human-derived CD45+, CD3+, and CD19+ cells 6 weeks following transplant revealed the highest 
level of engraftment in the IO UCB plus IO MSC cohort. Bone marrow analysis of human CD13 and CD14 markers revealed no significant difference between 
cohorts. We observed that IO MSC and UCB co-transplantation led to superior engraftment of CD45+, CD3+ and CD19+ lineage cells in the bone marrow at 6 weeks 
as compared with the IV UCB cohort controls. Our data suggests that IO co-transplantation of MSC and UCB facilitates human HSC engraftment in NSG mice.
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Introduction
Umbilical cord blood (UCB) is rich in hematopoietic stem cells 

(HSC) and it has been used as a graft source for both hematopoietic 
stem cell transplant (SCT) patients and murine models of transplant 
[1,2]. Usually, UCB is given after conditioning chemotherapy or 
radiation through intravenous (IV) infusion. However, due to delayed 
or sub-optimal engraftment in both mice and humans, other methods 
beyond IV infusion have been proposed. These include intra-osseous 
infusion, co-infusion of the UCB with mesenchymal stromal cells 
(MSC), or ex vivo expansion of UCB prior to infusion [3-5]. Here we 
report our data on intra-osseous co-infusion of UCB and MSC in a 
murine model of transplant.

It has been shown that a large percentage of HSCs, when introduced 
IV, do not reach the bone marrow niche [6,7]. Cui et al. demonstrated 
that when fluorescently labelled donor bone marrow cells are injected 
IV in an irradiated syngeneic mouse model, only 1-2% of donor HSCs 
reached the bone marrow [6]. In mouse models, direct IO injection 
of HSC improves overall engraftment, possibly by bypassing potential 
“trapping” sites in multiple organs including the lung, liver, spleen 
and kidney [8-10]. In an experiment performed by Castello et al. 

direct IO inoculation of UCB resulted in higher engraftment rates 
when compared to IV UCB injection 30 days post transplantation, 
as measured by the abundance of human myeloid cells, identified by 
CD45+ cells within the bone marrow [9]. 

The bone marrow microenvironment provides an important niche 
for the proliferation and differentiation of HSC [11-14]. Human MSC 
have been shown to support the growth and differentiation of HSC [15]. 
Bone marrow MSC support hematopoietic growth through a number 
of mechanisms including the production of IL-6, IL-11, leukemia 
inhibitory factor, stem cell factor and thrombopoietin [16,17]. MSC 
also aid in the homing and migration of HSC to the bone marrow [18]. 
Furthermore, the addition of MSC ex vivo to UCB cultures results in 
significant expansion of the hematopoietic stem (CD34+) cell pool. This 
method of ex vivo expansion has been used to increase the cell dosages 
of UCB grafts in patients undergoing SCT [12].

MSCs have also been co-infused with CD34-selected human UCB 
IV in a murine model of hematopoietic stem cell transplant [19]. In this 
model, mice transplanted with CD34 selected UCB and Stro-1- MSCs 
exhibited significantly greater human hematopoietic engraftment in the 
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bone marrow, spleen and blood (CD45%: 48, 35, and 14, respectively) 
when compared to mice transplanted with UCB alone (CD45%: 27, 15, 
and 4, respectively) at 12 weeks following transplantation. These data 
formed the basis for the approach of using a combination of MSC and 
UCB co-transplantation IV in clinical trials, which were found to be 
safe [20]. 

Carrancio et al. demonstrated that in a mouse transplantation 
model, co-infusion of human MSCs and human CD34+ UBC 
enhanced the engraftment of myeloid compartment when compared 
to controls [21]. Mice co-transplanted with MSC and UCB by either 
the IV or IO route had greater B-cell (CD19+) and myeloid (CD13+) 
chimerism at 3 weeks following transplantation. Furthermore, mice 
transplanted with IO UCB and IO MSC had the greatest rate of human 
engraftment (CD45+) in the injected femur. Based on the data above, 
we hypothesized that co-transplantation of MSC and UCB via direct 
IO route would further improve early human engraftment in a mouse 
transplantation model. 

Methods
Mice

Non-Obese Diabetic- Severe Combined Immunodeficiency- 
IL2Rgammanull (NSG) mice were from breeding pairs originally 
purchased from Jackson Laboratories. NSG were bred in a pathogen-
free unit and maintained in sterile cages.

Human MSCs

Human MSC (CD105+ CD73+ CD45- CD14-) were obtained from 
bone marrow donors using Percoll gradient isolation and culture-
expanded to a homogeneous population under approved protocols 
in the National Center for Regenerative Medicine/Seidman Cancer 
Center Cellular Therapy Lab. MSCs were preserved in DMSO and 
when needed were thawed and re-suspended at the appropriate 
concentration per cohort.

CD34+ UCB cell isolation

Cord blood units were received from the Cleveland Cord Blood 
Center. Each unit was diluted 1:3 with Phosphate Buffered Saline (PBS) 
+ 0.5% Human Serum Albumin (HSA) and layered onto Ficoll Paque 
PLUS to isolate the mononuclear cells by density gradient. After a cell 
count and washes, the mononuclear cells were labeled per protocol 
using the Miltenyi Biotec CD34 Microbead Kit. The CD34 cells were 
then isolated using an LS column in a magnet and washed three times 
with MACS buffer. The CD34 cells from both cord blood units were 
combined, counted, and re-suspended in PBS for injection into mice.

Murine transplantation

Female Nude Obese Diabetic Severe Combined Immunodeficiency 
(NSG) mice aged 8 to 12 weeks were purchased from Jackson 
Laboratory (Bar Harbor, ME). Prior to SCT, recipient mice were ear 
punched for individual identification. Mice received allogeneic SCT 
using CD34 selected human umbilical cord blood. NSG mice received 
300 cGy TBI immediately prior to receiving 5 × 105 CD34+ selected cells 
from human umbilical cord blood with or without 1 × 106 human MSC. 

Six groups of NSG mice were studied: 1) intravenous (IV) 5x105 
UCB CD34+ cells, 2) IV 5 × 105 UCB CD34+ cells and 1 × 106 MSC, 
3) IO 5 × 105 UCB CD34+ cells, 4) IO 5 × 105 UCB CD34+ cells and 
IO 1 × 106 MSC, 5) IO 5x105 UCB CD34+ cells and IV 1 × 106 MSC, 
and 6) IV 5x105 UCB CD34+ and IO 1 × 106 MSC. MSC dose was 

arbitrarily set at 2:1 with UCB CD34+ cell dose. IV injections: cells were 
administered via tail vein injection suspended in a total volume of 200 
µl. IO injections: Mice were anesthetized using fluorine gas, the left leg 
was shaved, the hair removed and betadine was applied to the skin. 
Cells were administered via bilateral tibia IO injections suspended in 
a total volume of 40 µl (20 µl in each tibia) using a 30-gauge needle. 
There were five mice in each cohort. Flow Cytometry: Peripheral blood 
samples from mice were analyzed on weeks 2, 4 and 6. Bone marrow 
tissue samples from mice were analyzed on week 6. Peripheral blood 
and bone marrow samples were stained for T cell markers, (CD3), 
myeloid markers (CD45, CD13, CD14) and with B-cell markers 
(CD19). Specific lineage markers (CD3, CD13, CD14 and CD19) 
were analyzed inside the human CD45+ population. All monoclonal 
antibodies (mAbs) were purchased from BD Biosciences Pharmingen 
(San Diego, CA) or eBioscience. At least 1 × 105 events were analyzed 
per conjugated MAb stain condition. Data were analyzed using CFlow.

The liver, ileum, ascending colon, and right tibia were harvested. 
Organs were fixed in 10% buffered formalin, embedded in paraffin, 
cut into 5μm-thicksections, and stained with hematoxylin and eosin 
for histological examination. Slides were coded without reference to 
transplant group or treatment and reviewed in blinded fashion by a 
single pathologist. All animal studies were approved by the Institutional 
Animal Care and Use Committee (IACUC) at Case Western Reserve 
University (IACUC protocol 2015-0118).

Histology

An independent hematopathologist, blinded to cohort 
characteristics, evaluated tibial sections, one from each mouse in every 
cohort (for a total of 5 per cohort), for myeloid-to-erythroid ratio, 
cellularity, and megakaryocyte percentages. 

Statistics

All values are expressed as the mean plus or minus standard error 
of the mean (± SEM). Statistical comparisons between groups were 
completed using Mann and Whitney test (nonparametric data).

Results
IO co-transplantation of CD34+ UCB and MSC improves 
overall HSC engraftment and enhances CD3+ T cell and 
CD19+ B cell recovery

Following irradiation, recipient mice were injected with MSC 
and CD34+ UCB via either the IV or IO route. At six weeks following 
transplantation, we assessed the degree of hematopoietic engraftment 
that can be traced to human CD34+ lineage by measuring cells 
that stained positive for human CD45 by flow cytometry. Cellular 
engraftment was significantly enhanced in the group receiving the IO 
co-transplantation of UCB and MSC as compared to IV UCB alone 
(34% vs. 2.9%, respectively; Figure 1 and Table 1; p < 0.001). Consistent 
with our hypothesis that administration of MSC improves overall UCB 
engraftment, we observed that any combination of UCB and MSC co-
administration, irrespective of the mode of delivery of either the UCB or 
MSC, exhibited significantly improved HSC engraftment as compared 
to IV UCB injection alone. In particular, direct IO administration of 
UCB in the presence of either IO or IV MSC led to a trend towards 
improved engraftment at 6 weeks among CD45+ lineage cells as well as 
CD3+, CD13+, CD14+ and CD19+ cells (Table 1).

CD19+ B cell and CD3+ T cells recovery was significantly increased 
(p < 0.001 and p < 0.05, respectively) in the IO UCB and MSC co-
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transplantation cohort compared to IV UCB only cohort (B-cell 28% 
vs. 2%; T-cell 3% vs. 0.1%; Figure 1 and Table 1). Both the IV UCB/
IV MSC and the IO UCB/IV MSC cohorts demonstrated significant 
improvement in engraftment over the IV UCB control. Specifically, 
CD19+ B cell recovery was significantly elevated in mice that received 
both UCB and MSC concurrently using the same route (IO or IV) 
of administration (28% vs. 21%, respectively) as compared to CD19+ 
B cell recovery when UCS and MSC were administered via different 
routes (IV/IO, 4%, IO/IV, 3%, respectively). 

Direct histologic evaluation of IO injected bone marrow

Next, we correlated our flow cytometric analyses of hematopoietic 
recovery with direct cellularity assessment of the injected mouse 
bone marrow compartments (Figure 2). An analysis of the marrow 
cellularity by an un-biased hematopathologist revealed a myeloid-
to-erythroid ratio of roughly 10:1 in all the mouse cohorts (Table 2). 
Interestingly, although statistically non-significant, the number of 
megakaryocyte per high-powered field was highest in the cohort with 
IV co-infused UCB and MSC. The overall bone marrow cellularity 
varied widely between cohort samples, and no significant differences 
were detected among cohorts (Table 2). These morphological data did 

not directly correlate with the numerical analysis of hematopoietic and 
immune reconstitution within the bone marrow samples by the more 
quantitative flow cytometry analysis.

Discussion 
In our current study, we demonstrated that IO co-transplantation 

of CD34-selected UCB and MSCs improved human hematopoietic cell 
engraftment over UCB controls administered IV. Interestingly, we also 
observed a predominance of early B-cell engraftment (CD19) within 
the bone marrow. Our observation is in agreement with previous 
published reports of human UCB engraftment in NOD/SCID mice 
[21,22]. It is not surprising that co-localizing MSCs and UCB within 
the bone improves engraftment, as MSCs support hematopoiesis 
through a number of mechanisms within the bone marrow niche. 
These mechanisms include cytokine support [16,17], especially 
within the perivascular space within the marrow where MSCs secrete 
CXCL12 and stem cell factor [18]. Furthermore, the injected MSC 
may have a role in replacing damaged or ineffective marrow resident 
MSCs. Our data demonstrating that IO co-administration of UCB and 
MSC resulted in a significant increase in both the CD19+ B-cell and 
CD3+ T-cell populations within the bone marrow suggest that MSCs, 

Figure 1. Percent CD45, CD3, CD13, CD14, CD19 in the right tibia bone marrow at 6 weeks post umbilical cord blood infusion. IV UCB = intravenous umbilical cord blood, IO UCB = 
intra-osseous umbilical cord blood, IV UCB + IV MSC = intravenous umbilical cord blood and mesenchymal stromal cells, IO UCB + IO MSC = intra-osseous umbilical cord blood and 
mesenchymal stromal cells, IV UCB + IO MSC = intravenous umbilical cord blood and intra-osseous mesenchymal stromal cells, IO UCB + IV MSC = intra-osseous umbilical cord blood 
and INTRAVENOUS mesenchymal stromal cells (* = p < 0.05; ** = p < 0.001). p-values as compared to the intravenous umbilical cord blood group.

IV UCB IO UCB IV UCB + IO MSC IV UCB + IV MSC IO UCB + IV MSC IO UCB + IO MSC
CD45 2.9% 2.5% (p > 0.05) 7% (p > 0.05) 22% (p < 0.01) 31% (p < 0.01) 34% (p < 0.01)
CD3 0.1% 0.2% (p > 0.05) 0.2% (p > 0.05) 0.5% (p > 0.05) 1.4% (p > 0.05) 3% (p < 0.05)
CD13 0.3% 0.7% (p > 0.05) 2.6% (p > 0.05) 0.3% (p > 0.05) 4.8% (p > 0.05) 4.7% (p > 0.05)
CD14 0.4% 0.2% (p > 0.05) 0.3% (p > 0.05) 0.5% (p > 0.05) 0.2% (p > 0.05) 0.9% (p > 0.05)
CD19 2.0% 0.9% (p > 0.05) 4% (p > 0.05) 21% (p < 0.01) 3% (p > 0.05) 28% (p < 0.01)

Table 1. Summary of the percent CD45, CD3, CD13, CD14, CD19 in the right tibia bone marrow at 6 weeks post umbilical cord blood infusion. IV UCB = intravenous umbilical cord blood, 
IO UCB = intra-osseous umbilical cord blood, IV UCB + IV MSC = intravenous umbilical cord blood and mesenchymal stromal cells, IO UCB + IO MSC = intra-osseous umbilical cord 
blood and mesenchymal stromal cells, IV UCB + IO MSC = intravenous umbilical cord blood and intra-osseous mesenchymal stromal cells, IO UCB + IV MSC = intra-osseous umbilical 
cord blood and INTRAVENOUS mesenchymal stromal cells. p-values as compared to the intravenous umbilical cord blood group.
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especially when directly co-infused into the bone marrow niche with 
UCBs, allow for a more robust immunologic re-constitution of the 
HSCs from UCB. Potential mechanisms by which MSC accomplish 
this is to act through both soluble factors, such as cytokines and 
growth factors, as well as via direct cell-cell contact with HSCs and 
cells of the bone marrow niche [23,24]. Direct contact of HSC by MSC 
in ex vivo expansion studies have demonstrated an increase in early 
lymphoid progenitors production [25,26]. Indeed, the importance of 
MSC support and interaction with the hematopoietic stem cell may 
be exemplified by the similar engraftment rate of the IO UCB cohort 
compared to the IV UCB cohort. The specific interaction between MSC 
and UCB in the bone marrow is not addressed in our study, and future 
investigations in this area may yield further scientific and mechanistic 
insights.

We did not observe a significant difference in CD45+, CD3+, CD13+, 
CD14+ or CD19+ cells in the peripheral blood among any of our cohorts 
at week 3 and week 6. However, human bone marrow engraftment 
in the absence of peripheral engraftment is considered an adequate 
surrogate marker in mice models [22]. 

Interestingly, a detailed histological analysis of the injected bone 
marrow did not demonstrate any differences in overall cellularity, 
megakaryocytic: erythrocytic (M:E) ratio, or the percentages of 
megakaryocytes among cohorts. This may be due to autologous recovery 
of murine bone marrow cells, which accompanied human UCB HSC 
engraftment. It is noteworthy that in the histologic evaluation of the IO 
MSC and IO UCB cohort, we observed an abundance of stromal tissue 
within the bone marrow microenvironment (Figure 2). 

Overall, our results support and form the scientific basis for a new 
method of UCB transplantation that can be translated into clinical 
practice. UCB represents an important graft source for roughly one 
third of potential SCT patients who do not have a HLA matched 
related or unrelated donor [27,28]. However, UCB as a HSC source 
has its limitations, including lower cells dose resulting in slow or poor 
engraftment [1,29,30]. Various methods to optimize clinical UCB 
engraftment have been tried including ex-vivo expansion of UCB, intra-

osseous transplantation of UCB, and intravenous co-transplantation 
of UCB and MSCs [12,20,31]. In addition, it has been demonstrated 
in patients that direct IO transplantation of a single UCB unit is safe, 
effective, and well tolerated following non-myeloablative conditioning 
preparatory regimen [31,32]. As a direct translation of our study 
presented here, we have now opened a clinical trial utilizing direct IO 
co-infusion of UCB and allogeneic MSC at the Seidman Cancer Center 
of the University Hospitals Case Medical Center (NCT02181478). 
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