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Abstract
Adipose derived stem cells (ASC) can be extracted easily in large quantities with low mortality. ASC have a potential of differentiation toward mesodermal stem cell 
lineages such as adipogenic, chondrogenic, osteogenic and myogenic pathways and ectodermal stem cell lineage such as neuronal pathway. ASC differentiation may be 
achieved with specific induction cocktails in culture medium. ASC and differentiated cells could have a pivotal role in fat grafting reconstruction, bone defect healing, 
muscle reconstruction procedure, and recovery from central-peripheral nerve injury.
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Introduction
Adipose derived stem cells (ASC) can be easily and repeatedly 

extracted from liposuction and can be obtained in large quantities 
with minimal discomfort. In addition, ASC can also proliferate and 
differentiate well, have multi-lineage differentiating potential, adhere 
well to plastic surface, and maintain the characteristics of stem cells in 
all age groups compared to adult stem cells from other sources [1]. It 
can be differentiated into most mesenchymal cells such as adipogenic, 
chondrogenic, osteogenic and myogenic cells and cells of the neural 
ectodermal lineage. Zuk et al. obtained lipid tissue by liposuction, 
treated with collagenase, centrifuged and separated into the upper 
fat cell layer and the lower stromal vascular fraction. They induced 
adipogenic, chondrogenic, osteogenic, myogenic, and neurogenic 
differentiation pathways using lineage specific induction agents 
such as dexamethasone, isobutyl-methyl xanthine (IBMX), insulin, 
1.25-dihydroxyvitamine D3, and ascorbate [2]. This mini review 
highlights the differentiation of ASC into various mesenchymal lineages 
and neuronal differentiation under in vitro and in vivo conditions and 
clinical application of ASC.

Adipogenesis
Fat transfer can be useful for reconstruction of soft-tissue defects 

due to trauma, surgical resection, or cosmetic procedures such as 
treatment of wrinkles. ASC-enriched fat grafting can enhance fat graft 
survival rate by reducing reabsorption of fatty tissue transplanted 
[3]. The standard induction cocktail for adipocytes differentiation 
is composed of IBMX, dexamethasone, insulin, and indomethacin 
[4]. Dexamethasone and IBMX induce differentiation of ASC into 
adipocytes by increasing expression of CCAAT enhancer binding 
protein (C/EBP) and intracellular cAMP, respectively [5,6]. Adipocyte 
differentiation can be easily confirmed by the Oil Red O staining of 
lipid vacuoles [7]. In contrast, high level of retinoids, interleukin (IL) 
-1, IL-2, transforming growth factor (TGF) β and tumor necrosis 

factor (TNF) α inhibit adipocyte differentiation [8]. Adipogenesis 
and angiogenesis are closely related, and the development of fat 
mass growth and microcirculation occurs together during fetal 
development [9]. Addition of factors involved in angiogenesis, such 
as vascular endothelial growth factors, fibroblast growth factor-2, 
platelet-derived growth factor BB, increased angiogenesis in adipose 
tissue and improved adipose tissue growth in vivo murine tissue [10]. 
Vascularized adipose tissue using ASC can play an important role in 
tissue replacement procedures such as cosmetic, trauma, and cancer-
related reconstructive procedures.

Chondrogenesis
ASC can differentiate into cartilage. In vitro, high-density culture 

of ASCs induced by chondrogenic medium (supplementation with 
insulin, TGF β, and ascorbate-2-phosphate) resulted in increased 
expression of extracellular matrix proteins and formation of the 
cartilage compact nodule [2]. An in vivo animal experiment revealed 
that reconstitution ability of cultured ASCs on femoral defect was 
better than that of periosteum-derived stem cell or native mechanisms 
[11]. Treatment of ASC with bone morphogenetic protein (BMP)-7 for 
only 15 minutes proved to promote cartilage differentiation [12].

Osteogenesis
Lee et al. initiated ASC culture from the epididymal fat pad of 

Lewis rat and differentiated ASC into osteoblasts using bone induction 
factors [7]. Cells differentiated into osteoblasts were transplanted 
to Lewis rat subcutaneous tissues and in vivo bone formation was 
identified at 8 weeks. Differentiation into osteoblast was evidenced 
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by Alizarin red staining of a calcified extracellular matrix and the 
immunohistochemical staining for osteocalcin [7]. Cowan et al. 
showed that 70-90% of critical-size mouse calvarial defects could be 
treated with implanted PLGA scaffolds seeded with ASC in 12 weeks 
[13]. Dexamethasone, β-glycerophosphate, ascorbic acid, and vitamin 
D can be used to promote the differentiation of stem cells into the 
osteogenic lineage [7,14]. As with the use of BMP-7 for chondrogenic 
differentiation, treatment of BMP-2 in ASC for 15 minutes can promote 
osteogenic differentiation [12].

Myogenesis
ASC cultures supplemented with desmin, myogenin, myogenic 

regulatory factor, and myosin heavy chain promote myogenesis [2]. 
However, the differentiation into myocytes takes more than 4 weeks, 
and it is the most difficult to differentiate among all the stem cell 
differentiation with low reproducibility [15]. Rodriguez et al. injected 
human ASC into the anterior tibialis of dystrophin-deficient mice as 
a model for Duchenne muscular dystrophy and observed that human 
dystrophin was expressed in the injected tibialis anterior of the mice at 
6 months after administration [16]. In addition, dystrophin - positive 
cells were observed in the adjacent gastrocnemius muscle, suggesting 
human ASC migration to the surrounding muscle [16].

Neurogenesis
When ASC were cultured in no serum media with 

β-mercaptoethanol, new growth of cellular retraction and processes 
from the cell body were observed [2]. This change was associated 
with a concurrent increase in expression of neuronal markers such as 
NeuN, nestin and NSE [2]. ASC could differentiate into the neuronal 
and the glial pathways when valproic acid, butylated hydroxyanisole, 
insulin, and hydrocortisone were used as differentiation inducers [17]. 
Angiogenesis, enhanced immunosuppression, and an increase of the 
viability of endogenous neurons as well as direct cell replacement of 
stem cells might be involved in symptom improvement of the stroke 
patients [18]. Kim et al. reported that undifferentiated ASC and 
neuronal lineage cells derived from ASC promoted peripheral nerve 
regeneration (higher nerve conduction velocity) in rats undergoing 
nerve defect bridged by tubes made of the polycaprolactone [19].
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