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Abstract
Introduction: The imbalance between oxidants and antioxidants contributes to the pathophysiology of ASD. 

Objective: First, we evaluated the link between the oxidative stress related biomarkers and social impairment of autism spectrum disorder (ASD).

Methods: We measured the urinary levels of an oxidative stress biomarker, hexanoyl-lysine (HEL), the total antioxidant capacity (TAC) and the DNA methylation 
biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the plasma levels of a major antioxidant enzyme, superoxide dismutase (SOD). We examined the relationship 
between these four biomarkers and social responsiveness in 20 individuals with ASD and in 11 healthy controls. The sex and age distributions (11.4 ± 5.1 years vs. 13.9 
± 6.6 years) were not significantly different between the groups. Social responsiveness was assessed using the Social Responsiveness Scale (SRS). 

Results: Dietary TAC from chocolate, biscuits and cookies, jam and marmalade were significantly higher in the ASD group than in the control group. Urinary TAC 
levels were significantly lower, but the urinary HEL levels were significantly higher in the ASD group compared to the control group. Urinary 8-OHdG levels and 
plasma SOD levels were not significantly difference between the groups. SRS scores were significantly higher in the ASD group than in the control group. Stepwise 
regression analysis revealed that urinary TAC and HEL levels may predict differences in the biomarkers and SRS scores between the groups. 

Conclusion: A critical imbalance between the urinary HEL and TAC levels may contribute to impaired social responsiveness in individuals with ASD without the 
DNA methylation.
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Introduction
The prevalence of autism spectrum disorders (ASD) has markedly 

increased in recent years [1]. ASD symptoms usually appear during 
early development and generally lead to serious lifelong limitations in 
function; thus, both genetic and environmental factors may contribute 
to its development [2,3]. The shift in the balance between oxidants 
and antioxidants in favor of oxidants is termed “oxidative stress” [4]. 
Regulation of reduction/oxidation (redox) state is important for cell 
viability, proliferation and organ function [4], however, imbalance of 
oxidant/antioxidant balance such as overproduction of ROS became 
toxic to neurons, inducing DNA methylation [5] and various tissues 
damage [6]. Because the brain is highly vulnerable to oxidative stress 
during early development [6], oxidative stress-induced neuronal 
damage may occur in genetically predisposed individuals [7]. Thus, 
deficits in antioxidant capacity may important in the etiology of 
ASD. The total antioxidant capacity (TAC) in urine and plasma is a 
parameter used to characterize the antioxidant status of the body [8,9].

Recent studies in ASD have shown significantly reduced urinary 
levels of TAC, indicating increased vulnerability to oxidative 
damage [6], and significantly higher urinary levels of 8-hydroxy-
2′-deoxyguanosine (8-OHdG) [10]. further, the urinary levels of 
oxidative stress markers such as hexanoyl-lysine (HEL) were found to 
be elevated in children with ASD, and higher HEL values correlated 
with the hyperactivity component of the Childhood Autism Rating 

Scale [11]. Thus, urinary oxidative stress-related biomarkers, including 
HEL, which is reportedly a more sensitive biomarker of oxidative stress 
[12], TAC and biomarkers of DNA methylation may provide useful 
information about oxidative stress-related brain damage. However, few 
studies have measured urinary levels of HEL, TAP and 8-OHdG. 

Increased ROS with a concomitant decrease in antioxidant 
capacity may induce more serious damage in diseases such as leukemia 
[13,14]. However, few reliable studies have shown increased HEL to be 
concomitant with decreased antioxidant capacity in ASD.

Interestingly, a recent study revealed that decreased serum levels 
of SODs, which are major antioxidant enzymes [15] and contribute to 
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human neurodegenerative disorders [16], may also be implicated in 
the pathophysiology of ASD [17]. Previous studies have also reported 
that altered plasma levels of enzymatic antioxidants such as SOD, 
ceruloplasmin (Cp), and transferrin (Tf) play an important role in 
ASD [18-25]. In spite of the important pathophysiological contribution 
of SOD in ASD, the role of the plasma SOD levels in relation to the 
urinary levels of oxidative stress-related biomarkers remains unclear. 

These considerations taken together, we pursued three avenues 
of research in this work. First, we evaluated the link between the 
urinary levels of HEL, TAC and 8-OHdG and social responsiveness in 
individuals with ASD. Next, we assessed the role of plasma SOD levels 
in relation to these urinary biomarkers. Finally, we determined the 
relationship between HEL and TAC in urine of individuals with ASD. 
Because previous clinical studies have found that urinary levels of TAC 
are affected by diet [26,27], we also assessed dietary nutrient intake and 
estimated dietary TAP.

Subjects and methods
Subjects

This study included a total of 31 young, physically healthy 
individuals in Hanshin area (Kobe and Osaka prefectures) participated 
in this study. They were recruited from the medical care facilities of 
the Research Institute of Pervasive Developmental Disorders of Ashiya 
University based on their presenting for a medical consultation between 
October 2013 and September2015. ASD was diagnosed based on the 
DSM-5 criteria [28] and was confirmed by the Autism Diagnostic 
Interview-Revised (ADI-R) [29]. Two psychiatrists specializing in ASD 
and developmental disorders diagnosed all 20 individuals with ASD. 
Among the 31 participants, 20 had an independent clinical diagnosis of 
ASD (13 males and 7 females, mean age: 11.1 ± 5.2 years old, age range: 
6-22 years old), and the remaining 11 were normal healthy controls 
(7 males and 4 females, mean age: 13.9 ± 6.6 years old, age range: 
5-21 years old). These individuals with ASD had the core symptoms 
of the DSM-5 diagnostic criteria for ASD without any abnormal 
neurological symptoms (e.g., seizure or movement disorders). The 
sex and age distributions were not significantly different between 

the  two groups. The 20 individuals with ASD and the 11 individuals 
in the control group were matched on home environment, feeding 
habits and full intelligent quotient (IQ) scores (Table 1). The 11 normal 
controls were considered to be physically and mentally healthy based 
on initial physical and mental screening tests. At the initial screening, 
physical (resting blood pressure and heart rate) and clinical laboratory 
examinations (hematology and plasma chemistry, including plasma 
fatty acids, cholesterol and triglycerides) were performed on all 31 
participants. These 31 participants did not have any abnormalities in 
their physical examinations and laboratory findings. The IQs of the 
individuals were estimated using the Wechsler Intelligence Scale for 
children and adolescents aged 6-16 years old [30] or the respective 
scale for adults (WAIS-R) (Table 1). Comorbid psychiatric disorders 
were evaluated based on the Structured Clinical Interview for DSM-IV 
Axis I Disorders (SCID). None of the ASD or control individuals had 
any history of neurological conditions, including seizure, movement 
disorders, head injury, Attention-Deficit Hyperactivity Disorder or 
learning disorders. The additional inclusion criteria were as follows: (a) 
the absence of any other medical or comorbid psychiatric disorders; (b) 
a baseline verbal or full IQ greater than 70 as calculated by the Wechsler 
Intelligence Scale for Children-Revised Manual (WAIS-R) [30] or the 
respective scale for adults [31] (WISC) because subjects with high-
functioning pervasive developmental disorders were required to have 
a total IQ of at least 70 [32]; and (c) no treatment with antidepressants, 
anxiolytic medications or neuroleptics within the three months prior 
to the study (the treatment of ADHD symptoms with stimulants was 
allowed during this study, provided that the patient’s dosage was stable 
for at least 3 months before and during the study). 

All procedures performed in this study were accordance with the 
ethical standards of the Fujimoto Medical Clinic in Kobe City, Japan 
(Medical doctor, Kunio Yui) with the 1964 Declaration of Helsinki 
and its later amendments or comparable ethical standards. This ethics 
committee is registered with Pharmaceuticals and Medical Devices 
Agency of Japan to register the IRB information (http://www.info.
pmda.go.jp/). Most of the participants in this study were young people 
under the legal age of 20 years; thus, we obtained parental permission 
and applied information on the behalf of these individuals (e.g., 

Variables ASD (n=20) Controls (n=11) U P values
Age (Years) 11.1 ± 5.2 13.9 ± 6.6 84,00 0.30
Sex (male/female) 7/13 4/7 χ2 = 0.00 1.00
Full IQ 100.9 ± 25.91 109.38 ± 18.45 32.00 0.52
Scores of Autism Diagnostic Interview-Revised (ADI-R)
Domain A (social) 13.6 ± 6.3 ―
Domain B (communication) 8.0 ± 4.5 ―
Domain C (stereotyped) 11.2 ± 6.0 ―
Urinary levels
HEL (pmol/mL, Cre) 77.10 ± 30.56 1.76 ± 26.16 53.00 0.018*
8-OhdG (ng/mL Cre) 11.31 ± 5.50 19.51 ± 32.16 105.50 0.86
TAP (μMUric Acid equivalents) 2986.18 ± 999.25 4169.71 ± 1285.03 62.00 0.04*
Plasma SOD levels (U/ml) 3.86 ± 3.12 3.64 ± 2.82 103.00 0.79
Subscale scores of the SRS
Irritability 12.80 ± 4.4 12.73 ± 3.70 8.50 0.000**
Social withdrawal 25.80 ± 7.13 3.10 ± 4.7 40.00 0.000**
Stereotypy 41.25 ± 11.05 4.82 ± 7.17 1.50 0.000**
Hyperactivity 21.60 ± 5.28 4.73 ± 5.49 2.50 0.000**
Inappropriate speech 26.35 ± 27.00 2.18 ± 3.97 0.50 0.000**
Total score 114.94 ± 31.34 17.36 ± 23.40 3.00 0.000**

HEL, hexanolyl-lysinr; 8-OHdG, 8-hydoxy-2’-deoxyguanosine; TPA, Total Antioxidant Power; SRS, Social Responsiveness Scale; Values are mean ± SD * p < 0.05, **p < 0.001compared 
to normal controls.

Table 1. Subject characteristics and urinary levels of HEL, 8-OHdg and TAP, and the SRS scores in the 20 individuals with ASD and 11 normal controls.



Yui K (2018) The role of imbalance between urinary hexanoyl-lysine and total antioxidant capacity levels and its relation to plasma superoxide dismutase levels in 
autism spectrum disorder

 Volume 1(1): 3-9Glob Med Therap, 2018                doi: 10.15761/GMT.1000102

centrifuged to remove all insoluble materials. The specialists at the 
Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center 
for the Disabled (Tokyo, Japan) measured the urinary levels of HEL, 
8-OHdG and TAC. 

The urinary levels of HEL were measured in duplicate using a 
competitive ELISA kit (Japan International Cooperation Agency-JICA, 
Shizuoka, Japan) [43].

For measurement of the urinary levels of 8-OHdG, urine samples 
were centrifuged and the supernatant after proper dilution was 
used in duplicate for assessment with a competitive enzyme-linked 
immunosorbent assay kit (8-OHdG check ELISA kit, JalCA, Japan 
Institute for the Control of Aging, Shizuoka, Japan). These results 
were then corrected to the urinary concentration of creatinine, and 
the urinary 8-OHdG/creatinine levels were used in subsequent 
analyses [44]. 

For measurement of the urinary levels of urinary total antioxidant 
capacity, the urinary antioxidant capacity was determined by 
competitive enzyme-linked Immunosorbent assay (ELISA) [44]. This 
assay provides accurate determination of the total antioxidant activity 
in a sample that results from the combined activities of the constituents 
(Oxford Biomedical Research).

Plasma levels of SOD 

Plasma SOD levels were estimated from the rate of decrease in 
nitrite produced by hydroxylamine and the superoxide anions based on 
the nitrite method, using a Versa max instrument (Molecular Devices 
Co, Tokyo, Japan). Human plasma was assayed using an SOD Assay 
Kit (Takara Bio, Tokyo) according to the cytochrome c method, and 
the plasma SOD levels are expressed as units per milliliter. The assay 
sensitivity was 0.3 U/ml. The intra-assay and inter-assay coefficients 
were 2.11 and 2.10 U/ml, respectively.

Assessment of social impairment

The social responsiveness scale (SRS) can be used to distinguish 
clinically significant ASD from other psychiatric disorders based 
on varying levels of social impairment [45]. The SRS is a 65-item 
questionnaire completed by subjects’ parents for a quantitative 
assessment of autistic traits across a wide spectrum of children aged 
4-18 or 19 and more years (adult version). The total SRS raw scores 
range from 0 to195, with the highest scores corresponding to significant 
social impairment, as observed in individuals with severe ASD [47]. 
The SRS can reliably distinguish other psychiatric conditions from 
ASD [46] and assess the severity of autistic trait [47].

Statistical analyses

Because the data were not normally distributed, the non-parametric 
Mann-Whitney U test for multiple comparisons was used to determine 
the significant differences in the urine levels of HEL, 8-OHdG and TAC 
and plasma SOD levels as well as the five subscales and total scores on 
the SRS, and the intake of nutrients between the random subsamples 
of 10 individuals with ASD and 10 of the normal controls. Moreover, 
stepwise regression analysis was used to confirm the relationship 
between the urinary oxidative stress-related biomarkers (levels of 
HEL, 8-OHdG and TAC) and plasma SOD levels, and the other main 
variables, adjusting for the two subject groups, and the SRS five subscale 
and total scores (Table 2). We conducted statistical analyses using SPSS 
version 18.0 (IBM Tokyo, 2009).

recognizing whether each participant’s urinary TAP and plasma SOD 
levels were within the standard values according to SRL, Inc, Tokyo, 
Japan). The standard values of TAP levels were within standard ranges 
established by the Department of Pediatrics, Tokyo Metropolitan 
Fuchu Medical Center for the Disabled, Tokyo, Japan (3700 - 4000 
μM uric acid equivalents in 8 normal healthy subjects aged 6-37 years) 
[33], and those of plasma SOD levels were within standard ranges 
established by SRL, Inc., Tokyo, Japan (1.8-3.2 U/ml in 164 healthy 
subjects) [34]. The studies have been approved by the appropriate 
institutional and/or national research ethics committee and have been 
performed in accordance with the ethical standards as laid down in the 
1964 Declaration of Helsinki and its later amendments or comparable 
ethical standards. Written informed consent was obtained from 
the participants and/or their parents. This study was registered at . 
or.jp/jmactr (the Clinical Trials Registry, Japan Medical Association, 
2010/6/14; renewal,2015/12/31; ID: JMA-IIA00162).

Assessment of dietary nutrient intake 

Urinary levels of TAC may be affected by dietary food intake may 
[26,27]. Berries, fruits, nuts, chocolate, vegetables [35], and cafe and 
soybean oil had the highest antioxidant values [36]. Thus, participants 
who habitually ingested foods and snacks containing high antioxidant 
values (berries, fruits, nuts, chocolate, vegetables, coffee and soybean 
oil) were excluded from the study.

To assess the daily food intake, a semi-constructive questionnaire 
for the Japanese (DHQ) was performed using the junior high school 
version (DHQ15) (DHQ Support Center, http://www.ebnjapan.org/). 
The DHQ15 consisted of 72 questions on the frequency of intake of 
150 various food and beverage items and cooking methods. DHQ15 
was administered one month before the study on randomly selected 
subsamples of 10 individuals with ASD and 10 normal controls by the 
order of their submission to medical consultation during January 2013 
and June 2015. The food and beverage items and portion sizes in the 
questionnaire were derived primarily from the data in the Overview 
of Dietary Reference Intake for Japanese [37]. If there was any missing 
or unclear information recorded on the DHG 15 by the parents or 
subjects, the researcher (KY) questioned them by phone or e-mail, 
and information was corrected in the DHQ 15. The estimated intake 
of nutrients was calculated using a dedicated program for the DHQ 
system (DHQ Support Center, Tokyo, Japan) [38]. The validity of 
theDHQ15 has been already verified [39]. 

Estimation of dietary TAC

Urinary levels of TAC have been reported to be affected by dietary 
food intake. Grape juice (200 ml) [38] and cocoa powder (40 g) [39] 
increased urinary TAC. Thus, a dietary TAC value was assigned to 
each food item in the DHQ15. The 31 participants in this study were 
children or young adolescents with age range: 6-22 years old, their 
nutrients were less varied and were of smaller amounts than those of 
adults. We therefore calculated dietary TAC value of the remaining 34 
foods in the DHQ15 according to a previous study [35,42]. TAC values 
were expressed as mmol Fe2+/100 g of food for ferric. reducing ability of 
plasma (FRAP) [42] or mmol/100g oxygen radical absorbance capacity 
(ORAC) [35,42]. Finally, The TAC values of 18 foods were calculated as 
FRAP or those of 4 foods were calculated as ORAC. 

Urinary assay of HEL, 8-OHdG and TAC levels

Urines were collected as a spot sample and immediately stored 
at-80C until analysis. After the dissolving process, the urines were 
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Association between urinary HEL, TAC and 8-OHdG levels, 
and plasma SOD levels and their relations to the SRS scores

There were significant correlations between urinary TAC levels, 
and plasma SOD levels (r = 0.46, p =0.04) and SRS subscale scores of 
cognition (r = 0.47. p = 0.04) in the ASD group. Urinary HEL levels were 
significantly correlated with the SRS subscales of awareness (r = 0.60. 
p = 0.005) and mannerisms (r = 0.69, p = 0.001). Plasma SOD levels 
significantly correlated with SRS subscale scores of communications (r 
= 0.58, p = 0.007) and total scores (r = 0.65, p = 0.02).

Assessment of Nutrient Intake

There were no significant differences in weight, high, energy intake, 
or in the intake of protein (p = 1.00), cholesterol (p = 0.49), vitamin B2 
(p = 0.97), vitamin B12 (p = 0.97), vitamin C (p = 0.18), omega-6 (p = 
0.44), iron P = 0.55), copper (p = 0.55), omega-3 (p = 0.50) and omega-6 
PUFAs (p = 0.44) between the ASD and control groups (Table 3). 

Dietary total antioxidant power
The ASD group consumed significantly more dietary TAC in the 

form of chocolate (p = 0.02), cookies and biscuits 

(p = 0.04), and jam and marmalade (p = 0.007) compared to the 
control group. However, there was no significant correlation between 
dietary TAC and urinary levels of TAP (r = 0.02–0.57, p = 0.95–0.053) 
in ASD groups (Table 4).

Discussion
The present study first measured a set of urinary levels of HEL, 

TAC and 8-OHdG, and revealed significantly decreased levels of TAC 
and significantly increased levels of HEL in urine of the 20 individuals 
with ASD compared with the 11 healthy controls. It was also shown 
that there were no significant differences in urinary 8-OHdG levels 
between the groups. 

Stepwise multiple regression analysis identified significant 
correlations between the urinary levels of both TAC and HEL and the 
adjusting variables (the two subject groups, the levels of other urinary 
biomarkers and the total ABC scores) in the whole population. Thus, 
the urinary levels of TAC and HEL were appropriate models for 
distinguishing the ASD group from the control group and significantly 
predicted the adjusting variables. These findings suggest that the 
urinary levels of TAC and HEL may contribute to social impairment 
in individuals with ASD. 

A previous study revealed that the urinary levels of TAC were 
significantly lower without a concomitant increase in urinary catalase 

Results
Study population

Clinical features of in the 20 individuals with ASD were 
characterized by failure of normal back-and-forth conversation (n 
= 8), deficits in socio-emotional reciprocity (n = 9) and deficits in 
understanding relationships (n = 3). The mean total SRS score for our 
patients was 111.0 ± 33.1 (Table 1). Previous studies reported total 
SRS scores of 120.21 for children and adolescents with moderate-to-
severe ASD [48]. Considering that an SRS total score between 60 and 
80 is associated with a mild form of ASD [49], our patients suffered 
moderate or severe social impairment from ASD. Ages did not differ 
significantly between the ASD and control groups (p = 0.30). 

Urinary levels of oxidative stress markers

There was a significant increase in urinary HEL levels (p = 0.018) 
and a significant decrease in urinary TAC levels (p = 0.049) in the 20 
individuals with ASD compared to those observed in the 11 normal 
controls. Urinary levels of 8-OHdG and plasma levels of SOD were not 
significantly different between the groups (Table 1). 

Predictor variables

Table 2 summarizes the results of our stepwise multiple regression 
analysis. Urinary levels of TAC contributed significantly to the 
variables after adjusting for the two subject groups, urinary HEL levels, 
8-OHdG levels, plasma SOD levels, and the five subscale and total ABC 
scores (Step 1, R2 = 0.216, P = 0.008; step 2, R2 = 0.411, p = 0.001). 
Using Group used as a dependent variable showed a significance 
of contribution to the urinary TAC levels (step 1, unstandardized 
coefficients, B = 1152.564 ± 407.338, β = 0.5465, and p = 0.008; step 2, 
unstandardized coefficients, B = 3027.688 ± 713.591, β = 1.222, and p = 
0.000) and to the SRS cognition scores (unstandardized coefficients, B 
= 83.864 ± 27.572, β = 0.876, and p = 0.005). 

Furthermore, the procedure using urinary HEL levels as the 
independent variable terminated at step 2, explaining 22.1 % of the 
variance. The SRS subscale and total scores being used as the dependent 
variables, the statistical significance of contribution of the SRS subscale 
of awareness to the urinary HL levels (unstandardized coefficients, 
B = 2.312 ± 0.807, β = 0.470, and p = 0.008). These findings indicate 
that urinary levels of TAC and HEL were predictable measures for 
differences in the biomarkers and the SRS scores between the ASD 
group and the control group (Table 2). 

Model Model Model coefficients
R2 p-value B Beta p-value

TAP
Step 1 0.219 0.008**

Group (1=ASD, 2= controls) 1183.529 ± 415.231 0.468 0.008**
Step 2 0.416

Group (1=ASD, 2= controls) 109.753 ± 725.554 1.229 0.000**
SRS cognition scores 86.149 ± 28.034 0.881 0.005**

HEL
Step 1 0.212 0.009**

SRS awareness scores 0.009** 2.244 ± 0.803 0.460 0.009**

Table 2. Results of the stepwise regression analysis.

TAP = total antioxidant power; R2 = R-squared values; B = unstandardized coefficients; ASD = autism spectrum disorder; SRS =Social Responsiveness Scale; * p < 0.05, ** p <0.001, 
significant contribution.
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ASD (n = 10) Control (n = 10) U p value
Age (years) 11.4 ± 3.9 10.1 ± 3.9 35 0.45
High (cm) 142.1± 21.7 141.1 ± 20.2 42.5 0.84
Weight (kg 39.5 ± 21.6 39.2 ± 18.1 45.5 1.00

Energy (kcal) 2166.0 ± 523.6 2231.8 ± 617.5 40.0 0.72
Fat (g/day) 71.6 ± 26.2 78.8 ± 23.3 38.0 0.60

Protein (g/day) 79.2± 23.3 80.8 ± 27.0 43.0 0.91
Animal protein (mg/day) 32.4 ± 8.0 33.8 ± 12.0 41.0 0.78

Cholesterol (mg/day) 138.4 ± 179.0 127.8 ± 134.6 37.0 0.55
Carbohydrates (g/day) 297.8 ± 58.6 292.2 ± 86.8 45.0 1.00
Vitamin B2 (mg/day) 1.8 ± 0.71 7± 0.8 44.0 0.97
Vitamin B6 (mg/day) 1.4 ± 0.5 1.3 ± 0.4 42.5 0.84

Vitamin B12 (mg/day) 7.3 ± 4.0 7.0 ± 2.3 44.5 0.97
Vitamin C (mg/day) 1678.0 ± 79.4 119.4 ± 74.5 28.0 0.18

Iron (mg/day) 9.4 ± 2.7 8.3 ± 3.2 37.0 0.55
Copper (g/day) 1.3 ± 0.4 1.2 ± 0.4 37.0 0.55

Unsaturated fatty acid (g/day) 15.8 ± 5.21 6.7 ± 7.0 38.0 0.60
Saturated fatty acid (g/day) 23.9 ± 13.2 25.8 ± 10.0 38.0 0.60

Omega-3 (mg/day) 216.5 ± 161.6 192.7 ± 90.8 36.0 0.50
Omega-6 (mg/day) 384.5 ± 230.7 357.7 ± 121.3 35.0 0.44

Table 3. The intake of nutrients in the random subsamples of 10 individuals with ASD and random ubsample of 10 normal controls. 

Values are mean ± SD

ASD (n = 10) Control (n = 10) U p value
FRAP

Non-alcoholic beverages
Green tea 7.13 ± 5.7 8.72 ± 4.17 42.5 0.58
Fruit juice 2.79 ± 4.28 1.89 ± 4.19 31.5 0.17
Vegetables

Cabbage 0.26 ± 0.26 0.16 ± 0.13 39.5 0.44
Radishes 0.45 ± 0.25 0.31 ± 0.26 33.5 0.22
Tomatoes 0.08 ± 0.08 0.10 ± 0.09 43 0.63
Lettuce 0.09 ± 0.05 0.07 ± 0.06 41 0.53

Lotus root 1.10 ± 0.77 0.80 ± 0.44 44.5 0.68
Carrot 0.23 ± 0.21 0.17 ± 0.10 44.5 0.68

Other salted pickles 0.002 ± 0.006 0.065 ± 0.071 8 0.21
Seevegetables 0.57 ± 0.49 0.70 ± 0.71 27.5 0.09

Fruits
Oranges 0.65 ± 0.78 0.41± 0.51 39.5 0.44

Strawberries 1.10 ± 1.78 0.44 ± 0.48 43 0.63
Sugar confectioneries

Chocolate 0.94 ± 0.80 0.29 ± 0.33 20 0.02*
Japanese sweets with a sweet filling 0.02 ± 0.03 0.04 ± 0.05 49 0.97

Jam and marmalade 0.15 ± 0.13 0.00 ± 0.00 45 0.007*
Cookies and biscuits 0.06 ± 0.05 0.02 ± 0.02 22 0.04*

Pancakes 0.03 ± 0.03 0.02 ± 0.02 0.53
Japanese noodles 0.39 ± 0.30 0.24 ± 0.23 33 0.22

ORAC
Breakfast cereals 0.63 ± 0.46 0.42 ± 0.35 40.5 0.48

Egg 0.03 ± 0.01 0.02 ± 0.01 35 0.28
Meat and meet products 0.17 ± 0.09 0.20 ± 0.20 43.5 0.63

Poultry and poultry products 0.06 ± 0.05 0.07 ± 0.07 42.5 0.58

Table 4. Dietary TAP in the random subsamples of 10 individuals with ASD and 10 normal controls.

FRAP = ferric reducing ability of plasma; ORAC = oxygen radical absorbance capacity, Values are mean ± SD *p < 0.05.

activity and total thiol molecules, which are the main indicators of 
antioxidant capacity [50] in 29 children with ASD aged 6-12 years 
than in 24 age-matched healthy controls [6]. Further, 34 adolescent 
individuals with Asperger syndrome (mean age 12.89 ±2.58 years) 
showed significantly reduced plasma and erythrocyte levels of TAP 
compared to 34 age-matched controls, indicating a chronically 
low detoxifying capacity in these ASD individuals [25]. Regarding 

urinary HEL levels, a previous study reported that 24 children 
with ASD aged 5-12 years showed elevated levels of urinary HEL 
without concomitant alterations in the urinary levels of 8-OHdG 
or the erythrocyte levels of SOD, which may result from a deficit in 
membrane fluidity [11]. Further, a case-control study reported that 
68 children with ASD aged 3-10 years showed significantly increased 
levels of 8-OHdG in peripheral lymphocyte DNA compared to 54 
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age-matched healthy controls [10], indicating a deficit in antioxidant 
and methylation capacity that promote cellular damage and alter 
epigenetic gene expression. As indicated in this earlier works, pro-
oxidant environmental stressors may act in conjunction with a genetic 
predisposition toward the development of ASD [10]. Previous studies 
evaluated the following parameters: 1) urinary levels of TAP alone 
[25]; 2) urinary levels of TAC in concomitance with urinary catalase 
activity and total thiol molecules [6]; 3) urinary levels of 8-OHdG 
alone [10,51]; and 4) urinary levels of 8-OHdG in concomitance with 
HEL [11]. According to recent measurements, a set of oxidative stress-
related biomarkers such as urinary levels of HEL, TAC and 8-OHdG 
may provide useful information on neuronal damage by oxidative 
stress [52,53]. The present study first examined the urinary levels of 
this set of three oxidative stress-related biomarkers in ASD.

The significant increase in urinary HEL levels and the reduction 
in urinary TAC levels in individuals with ASD demonstrated in 
this study indicated an imbalance between oxidative stress and 
antioxidant capacity. Moreover, stepwise regression analysis revealed 
that the urinary levels of TAC and HEL were reliable measures for 
distinguishing the ASD group from the control group. A previous 
review article suggested that declining ROS levels are coupled with 
increased antioxidant enzyme activities, depending on the formation 
of antioxidant enzymes relative to the changes in the levels of free 
radicals [54]. Moreover, growing evidence indicates that the imbalance 
between ROS production and TAC may correlate with ASD [55,56]. 
Thus, the present study first revealed detailed and concrete findings 
on the imbalance between oxidative stress and TAC in the urine of 
individuals with ASD. These findings may provide additional and 
useful information on the significance of imbalance between increased 
oxidative stress and impaired urinary antioxidant systems in the 
pathophysiology of individuals with ASD. Although elevated levels 
of 8-OHdG in plasma or urine is a commonly used biomarker for 
assessing oxidative DNA damage during inflammatory disease and 
pro-oxidant exposures [10], DNA methylation analysis of ASD reveals 
multiple dysregulated biological pathways [57]. Thus, the ASD group in 
this study may be a subset of ASD without DNA methylation damage. 

Stepwise regression analysis and Spearman correlation coefficients 
revealed that urinary TAC levels were significantly correlated to 
plasma SOD levels and the SRS subscale scores for cognition. Previous 
studies reported significant decrease in plasma and urine SOD and 
TAC levels in 47 sarcoma patients [58] and significant increase in 
urine SOD and TAC levels after administration of L-carnitine in 12 
healthy subjects [59], indicating concomitant changes of plasma 
and urine SOD and TAC, supporting our findings. A previous study 
reported a significant positive correlation between plasma TAC levels 
and cognitive function in 105 subjects with early onset-first episode 
psychosis [60], and an association between lowered plasma TAP levels 
and cognitive dysfunction in 138 older adults with mild cognitive 
dysfunction [61] and in 90 healthy care workers [62]. The Spearman 
correlation coefficient also revealed a significant association between 
plasma SOD levels and the SRS subscale of communication. A previous 
study reported significant correlations between blood levels of SOD 
and psychosocial functioning such as “relation to friends” and “taking 
initiative and self-sufficiency” in 51 subjects with bipolar depression 
[63]. Social interaction-mediated lifespan extension of SOD mutants 
has been found in human [64]. Thus, SOD may be significantly 
correlated to social behavior, which supports our present findings.

Stepwise regression analysis and Spearman correlation coefficients 
further revealed that the urinary HEL levels were significantly 

correlated to the SRS subscale scores for awareness and mannerisms. 
Of reference, the plasma levels of 3-nitrotyrosine (3-MT), which is an 
oxidative stress marker [65], have previously been associated with low 
scores in SRS subscales of awareness in 18 children with ASD [66]. 
Sulforaphane, which has therapeutic potential against oxidative stress, 
was shown to improve SRS scores by 17% [48]. Thus, oxidative stress 
biomarkers are associated with the SRS scores, which supports our 
findings. 

A previous assessment of daily nutrient intake using DHQ 15 
revealed no significant differences in the intake of fat, protein, vitamin 
B2, vitamin B6, vitamin B12, vitamin C, omega-6, or omega-3 PUFAs 
between random subsamples of 10 individuals with ASD and those of 
10 healthy controls. With respect to the relationship between dietary 
intake and the urinary levels of TAP, intake of virgin olive oil [67] and 
tryptophan-enriched cereal [68] have been shown to increase urinary 
TAC. Conversely, refined potato starch resulted in decreased urinary 
levels of TAC [69]. Therefore, the effect of dietary intake on urinary 
TAC may be variable, and differences in dietary intake between the 
groups may not affect urinary TAC.

The dietary TAC of chocolate, biscuits and cookies, jam and 
marmalade were significantly higher in the ASD group than in the 
control group. Cocoa products such as chocolate are good sources of 
dietary antioxidants [70]. Cookies containing chocolate chips have 
been shown to possess the highest antioxidant capacity [71]. Biscuits 
including 5 % cocoa increased antioxidant properties [72]. Jam 
and marmalade processing has been shown to increase antioxidant 
capacity [73], and bilberry jams have been revealed as a good source of 
antioxidant compounds [74,75]. Thus, chocolate, cookies, biscuits, jam 
and marmalade possess higher antioxidant power. However, urinary 
TAC levels in the ASD group were significantly lower than those in the 
control group, indicating that antioxidant capacity in the ASD group 
may be impaired. 

Oxidative stress contributes to many pathological conditions. 
Aerobic organisms have integrated antioxidant systems, which include 
enzymatic and non-enzymatic antioxidants that are usually effective 
in blocking the harmful effects of ROS [76]. Such systems include the 
endogenous antioxidant defense system [77] and intrinsic antioxidant 
defenses [78]. Most previous studies on antioxidant capacity in 
individuals with ASD have suggested a vulnerability in antioxidant 
enzymes [24] or a chronically low detoxifying capacity [25]. These 
antioxidant defense systems may be a part of the endogenous 
antioxidant systems. Indeed, recent research on antioxidant networks 
has demonstrated that antioxidant enzymes such as SOD, glutathione 
peroxidase, and glutathione act as an antioxidant network within 
specific intracellular or extracellular components of the antioxidant 
system [79]. Further, a recent work has suggested that the autophagy-
lysosomal activities of these antioxidant enzymes may serve an essential 
function in preventing neurodegenerative diseases by removing 
damaged as part of an essential cellular antioxidant pathway [80]. 
These considerations taking together suggested that the endogenous 
intrinsic antioxidant system may be impaired in individuals with ASD. 
However, the present study did not examine the specific neurobiological 
roles of urinary TAP and plasma SOD, and further studies will need to 
determine which specific components may be affected in ASD. 

Compromised intrinsic antioxidant defense contribute to blood-
brain barrier (BBB) disruption through oxidative damage to cellular 
molecules [81]. When BBB disruption occurs, brain-specific proteins 
circulating inside the brain, are observed in the peripheral blood as an 
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index for estimating the extent of the increase in BBB permeability and 
brain damage [81]. As described above, overproduction of ROS results 
in oxidative stress the imbalance between ROS and antioxidant capacity 
(referred to oxidative stress) became toxic to neurons, damaging DNA, 
proteins and lipids, inducing neurodegeneration [4] such as ASD [82]. 
Thus, the imbalance between the generation of ROS and TAC may 
disrupt BBB and be related to impaired social responsiveness through 
biochemical processes such as imbalance between increased urinary 
levels of HEL as oxidants and urinary levels of TAC as antioxidant in 
individuals with ASD.

This study has some limitations. Previous studies examined 
urinary oxidative stress biomarkers such as F2-isoprostanes and their 
association with the activity of plasma enzymatic antioxidants such as 
SOD and glutathione peroxidase [83,84]. In this study, the urinary levels 
of 2-isoprostanes and plasma levels of glutathione were not measured; 
however, we examined a useful and informative set of oxidative stress-
related biomarkers and discovered novel important information on 
impaired antioxidant capacity that was not revealed in previous studies 
[6,11,25,85]. Second, ASD is most prevalent in males, with a male to 
female ratio of 4 to 1 [86]. However, in this study, the ASD and control 
groups were age- and gender-matched. Finally, the small sample size 
affects our ability to generalize our results to the entire population of 
individuals with ASD. 

In conclusion, the present study firstly found reduced levels of 
TAC and increased levels of HEL in urine in individuals with ASD 
with a lack of significant alterations in urinary 8-OHdG levels. Thus, 
the imbalance between the generation of ROS and TAC was impaired 
in individuals with ASD. In addition, as stepwise regression analysis 
revealed that urinary TAC levels showed preferentially contribute to 
the adjusting variables compared to urinary HEL levels, urinary TAC 
levels may be more appropriate model for distinguishing the ASD 
group from the control groups. Thus, endogenous antioxidant defense 
systems may be impaired in young individuals with ASD. Plasma SOD 
levels may be associated with urinary TAC levels and may be related to 
the impaired antioxidant capacity. These defects in the balance between 
oxidative stress and antioxidant capacity in urine may be related to the 
pathophysiology of social impairment in individuals with ASD. 
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