Fucitol, pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), skatole, the nanoputians, thebacon, pikachurin, tie fighter, spermidine and mirasorvone nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations.

Alireza Heidari*

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

In the current editorial, we study Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules (Figure 1) incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. In this regard, the development of Chemical Modified Electrodes (CEMs) is at present an area of great interest. CEMs can be divided broadly into two main categories; namely, surface modified and bulk modified electrodes. Methods of surface modification include adsorption, covalent bonding, attachment of polymer Nano films, etc. Polymer Nano film coated electrodes can be differentiated from other modification methods such as adsorption and covalent bonding in that they usually involve multilayer as opposed to monolayer frequently encountered for the latter methods. The thicker Nano films imply more active sites which lead to larger analytical signals. This advantage coupled with other, their versatility and wide applicability, makes polymer Nano film modified electrodes particularly suitable for analytical applications [1-27].

Electrochemical polymerization offers the advantage of reproducible deposition in terms of Nano film thickness and loading, making the immobilization procedure of a metal–based electrocatalyst very simple and reliable for Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Also, it must be notice that the nature of working electrode substrate in electropreparation of polymeric Nano film is very important, because properties of polymeric Nano films depend on the working electrode anti–cancer Nano materials. The ease and fast preparation and of obtaining a new reproducible surface, the low residual current, porous surface and low cost of Multi–Walled Carbon Nanotubes (MWCNTs) paste are some advantages of Carbon Paste Electrode (CPE) over all other solid electrodes [28-92].

On the other hand, it has been shown that, macrocyclic complexes of Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules are interest as modifying agents because in basic media Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules redox centers show high catalytic activity towards the oxidation of small organic anti–cancer Nano compounds. The high–valence species of Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules seem to act as strong oxidizing agents for low–electroactivity organic substrates. 1,2–Dioxetane (1,2–Dioxacyclobutane), 1,3–Dioxetane (1,3–Dioxacyclobutane), DMDM Hydantoin and Sulphobe as the anti–cancer organic intermediate products of methanol oxidation as well as formic acid, is important to investigate its electrochemical...

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us

Received: July 14, 2018; Accepted: August 14, 2018; Published: August 16, 2018

Global Imaging Insights
Heidari A (2018) Fucitol, pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCARboxylaTe), skatole, the nanoputians, thebacon, pikachurin, tie fighter, spermidine and mirasorvone nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations.

Figure 1. Molecular structure of (a) Fucitol, (b) Pterodactyladiene, (c) DEAD or DEADCAT (DiEthyl AzoDiCARboxylaTe), (d) Skatole, (e) the NanoPutians, (f) Thebacon, (g) Pikachurin, (h) Tie Fighter, (i) Spermidine and (j) Mirasorvone Nano molecules.
oxidation behavior in Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations [93-110].

In this editorial, we decided to combine the above mentioned advantageous features for the aim of Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Furthermore, in this editorial, we prepared poly Nano films by electropolymerization at the surface of Multi–Walled Carbon Nanotubes (MWCNTs) paste electrode. Then, Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules were incorporated into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) in a solution. The modifier layer of Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules at the electrode surface acts as a Nano catalyst for the treatment of human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations. Suitability of this Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules-modified polymeric Multi–Walled Carbon Nanotubes (MWCNTs) paste electrode toward the electrocatalytic treatment of human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations in alkaline medium at ambient temperature was investigated [111-182].

References


18. Alireza Heidari (2016) Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca²⁺), Iron (II) (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biast 7: 292.

19. Alireza Heidari (2016) Spectroscopy and Quantum Mechanics of the Helium Dimer (He₂⁻), Neon Dimer (Ne₂⁻), Argon Dimer (Ar₂⁻), Krypton Dimer (Kr₂⁻), Xenon Dimer (Xe₂⁻), Radon Dimer(Rn²⁻) and Ununacton Dimer (Un₂⁻) Molecular Cations. Chem Sci J 7: e112.


Heidari A (2018) Fucitol, pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), skatole, the nanoputians, thebacon, pikachurin, tie fighter, spermidine and mirasorvone nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations


Fucitol, pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), skatole, the nanoputians, thebacon, pikachurin, tie fighter, spermidine and mirasoro nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric Modified Electrode (NPEM) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations.