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system; CRE: cyclic AMP response element; CREB: CRE binding 
protein; DMEM: Dulbecco’s modified Eagle medium; DTPA: 
diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid; Ex: exendin; FBS: 
fetal bovine serum; GLP-1: glucagon-like peptide-1; GSH: glutathione; 
HKR: HEPES-buffered Krebs Ringer solution; HPX: hypoxanthine; 
HRP: horseradish peroxidase; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-tetrazolium bromide; NBT: nitrotetrazolium blue chloride; 
NF-κB: nuclear factor-kappa B; O2

–: superoxide anion; PBS: phosphate-
buffered saline; PD: Parkinson’s disease; ROS: reactive oxygen species; 
RT-PCR: reverse transcription polymerase chain reaction; SOD: 
superoxide dismutase; WST-1: water soluble tetrazolium-1; XOD: 
xanthine oxidase.

Introduction
Exendin (Ex)-4 is a peptide found from saliva of Gila monster 

(Heloderma suspectum) consisting of 39 amino acids, an analog of 
glucagon-like peptide-1 (GLP-1), and an agonist of GLP-1 receptor 
[1,2]. GLP-1 binds to GLP-1 receptor in pancreatic β cells and 
potentiates glucose-dependent insulin secretion to decrease blood 
glucose levels [3]. Ex-4 has 53% amino acids homologous to GLP-1, 
has higher affinity to GLP-1 receptor than GLP-1, and is less degraded 
in serum by dipeptidyl peptidase [1]. Therefore, Ex-4 recently has been 
used as a drug for type 2 diabetes mellitus.

It has been reported that GLP-1 is produced also in brain and that 
GLP-1 receptor expresses in neurons and glial cells widely in brain [4-
8]. In vitro experiments, GLP-1 was reported to protect neurons against 
glutamate-induced excitotoxicity and against amyloid β-induced 
oxidative stress and cell death, and to suppress lipopolysaccharide-
induced inflammatory cytokines in astrocytes [9-11]. In vivo 
experiments, GLP-1 was reported to protect neurons in rodent models 
of Alzheimer’s disease (AD) and Parkinson’s disease (PD) [12-14]. 

It was reported that Ex-4 permeated blood brain barrier [15]. In 
model mice of diabetes mellitus, Ex-4 injection could protect neurons 
through upregulation of glutamate transporters and neurotrophic 
factors [16,17]. In rodent models of brain ischemia, AD, and PD, Ex-4 
could protect neurons from oxidative stress-induced impairment 
[18-21]. It was known that hyperglycemia in diabetes mellitus might 
elevate oxidative stress and induce mitochondrial impairment to 
cause neuronal toxicity [22,23]. Also in human ischemia, AD and 
PD, oxidative stress and metabolic disturbance might cause neuronal 
dysfunction [24-26].

Abstract
Under some pathological conditions in brain, a large amount of superoxide anion (O2

–) is produced, causing various cellular damages. Among three isozymes of 
superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O2

– in extracellular space; however, a little is known about EC-SOD in brain. 
Exendin 4 (Ex-4), an analogue of glucagon-like peptide-1 (GLP-1), binds to GLP-1 receptor to potentiate insulin secretion in pancreatic β cells and is used 
extensively as a drug for type 2 diabetes mellitus. It was reported that Ex-4 might represent neuroprotective effects; however, the details of mechanisms and the effects 
on glial cells were unclear. In the present study, we examined the effects of Ex-4 on EC-SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, 
EC-SOD mRNA was increased by Ex-4 exposure in a time-dependent manner. The expression of EC-SOD protein was also increased by Ex-4 exposure for 24 h 
dose-dependently, and exendin (9-39), an antagonist of GLP-1 receptor, inhibited Ex-4-increased EC-SOD protein expression. Moreover, the cell-surface SOD 
activity in astrocytes and the activity of SOD released in the medium were not significantly affected by incubation of Ex-4 and/or exendin (9-39) for 24 h. These 
results suggest that Ex-4 might increase EC-SOD expression via binding to GLP-1 receptor although EC-SOD activities in astrocytes and in the medium were not 
affected. The regulation of EC-SOD in astrocytes may contribute to the defensive mechanism against oxidative stress in brain.
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nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium 
salt), diethylenetriamine-N,N,N’,N’’,N’’-pentaacetic acid (DTPA) 
and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide 
(MTT) were obtained from Dojindo (Kumamoto, Japan). Anti-EC-
SOD antibody was purchased from Enzo Life Sciences, Inc. (Plymouth 
Meeting, PA, U.S.A.). FavorPrepTM Tissue Total RNA Purification 
Mini Kit was from Favorgen (Ping-Tung, Taiwan). Omniscript 
Reverse Transcription kit was from Qiagen (Hilden, Germany). SYBR® 
Green Realtime PCR Master Mix was from Toyobo (Osaka, Japan). 
EC-SOD primer and 18S rRNA primer were obtained from Operon 
Biotechnologies (Tokyo, Japan).

Preparation of astrocytes culture

This study was carried out in compliance with the Guideline for 
Animal Experimentation at Osaka Prefecture University, with an effort 
to minimize the number of animals used and their suffering. Astrocytes 
were prepared as described previously [51]. In brief, cortex from 20-day-
old embryos, which were taken out from pregnant Wistar rats deeply 
anesthetized, were cleared of meninges, cut into about 1 mm3 blocks, 
and treated with 0.25% trypsin in Ca2+, Mg2+-free phosphate-buffered 
saline containing 5.5 mM glucose for 20 min at 37ºC with gentle 
shaking. An equal volume of horse serum supplemented with 0.1 mg/
ml of DNase I was added to the medium to inactivate the trypsin. Then, 
the tissues were centrifuged at 350 x g for 5 min. The tissue sediments 
were triturated through a pipette with DMEM containing 10% fetal 
bovine serum, 100 µg/ml streptomycin and 50 unit/ml penicillin. After 
filtering cell suspensions through a lens-cleaning paper (Fujifilm Co., 
Tokyo, Japan), the cells were plated on polyethyleneimine-coated 100 
mm-diameter plastic dishes (Iwaki, Asahi Glass Co., Tokyo, Japan) 
at a density of 0.8–1.3 x 105 cells/cm2. Cultures were maintained in a 
humidified atmosphere of 5% CO2 and 95% air at 37ºC with changing 
medium every 3 days. After one week, astrocytes were replated to 
remove neurons. On days 12–14, they were replated onto 96-well plates 
(MS-8096F; for tissue culture, Sumitomo, Tokyo, Japan), 12-well plates 
(Iwaki), 35 mm-diameter plastic dishes (Thermo Fisher Scientific Inc., 
Waltham, MA, U.S.A.), or 60 mm-diameter plastic dishes (Thermo 
Fisher Scientific) using an ordinary trypsin-treatment technique at a 
density of 1.2 x 105 cells/cm2 and stabilized for 1 day, then we used for 
experiments.

More than 90% of the cells were immunoreactively positive to glial 
fibrillary acidic protein (GFAP) using the antibody (Sigma). Less than 
10% of the cells were positive to Iba-1 using the antibody (Wako).

Cell viability

To evaluate cell viability, we measured total mitochondrial activity 
with so-called MTT assay. In brief, after the cells were stimulated, the 
medium was changed with a fresh one and one-tenth volume of 5 
mg/ml MTT solution was added. The cells were incubated for 1 h at 
37ºC and the formazan generated by total mitochondrial activity was 
dissolved in dimethylsulfoxide, and then the color development was 
measured at 585 nm with a microplate reader (ARVO 1420 Multilabel 
counter, Wallac, Turuk, Finland). When we observed cell morphology 
under a phase-contrast microscope, the remaining cell number is 
almost consistent with the results of MTT assay.

Reverse transcription-polymerase chain reaction (RT-PCR)

Cultured astrocytes were washed with PBS, followed by extraction 
of mRNA using FavorPrepTM Tissue Total RNA Purification Mini 
Kit and subsequent synthesis of complementary DNA with oligo dT 

Superoxide dismutase (SOD) is a unique enzyme that converts 
O2

– into H2O2 and O2 by dismutating reaction [27] and known to be 
classified into three isozymes: cytosolic SOD (Cyt-SOD, Cu/Zn-SOD or 
SOD1) that contains Cu2+ and Zn2+ as enzyme cofactors, mitochondrial 
SOD (Mt-SOD, Mn-SOD or SOD2) in its matrix that contains Mn2+, 
and extracellular SOD (EC-SOD or SOD3) that contains Cu2+ and Zn2+ 
and has the enzymatic activity in extracellular space. 

In the central nervous system (CNS), SOD isozymes are expressed 
and there are many reports suggesting that SOD plays important roles 
in defense against hypoxia-induced brain injury and neurodegenerative 
diseases such as PD [28-35]. However, most of these reports regard 
Cyt-SOD; not so much information on EC-SOD is known in CNS.

Although the expression level of EC-SOD in brain is considered 
to be much less than blood vessel or lung [36], it is reported that a 
proteolytic product of EC-SOD at C-terminal region is secreted in 
cerebrospinal fluid [37] and EC-SOD mRNA expression level increases 
in the brain after ischemia [38]. Furthermore, there are reports that 
mice overexpressing EC-SOD shows the increased resistance to focal 
cerebral ischemia [39,40], conversely EC-SOD deficiency in mice 
worsens outcome from focal cerebral ischemia [41]. Further, the 
beneficial function of EC-SOD is demonstrated in hyperoxia-induced 
brain injury in neonatal mice [42]. EC-SOD should play crucial roles 
in brain. 

In addition, we previously reported that the expression level of EC-
SOD in cultured astrocytes was higher than neurons and microglia by 
semi-quantitative RT-PCR and that lipopolysaccharide-stimulation 
increased SOD activity in the medium [43]. We also previously 
reported that dopamine incorporated into the cells through dopamine 
transporter triggered the EC-SOD induction via nuclear factor-kappa 
B (NF-κB) activation in cultured astrocytes [44]. Astrocytes play 
various important roles in CNS, such as maintenance of blood brain 
barrier, scavenging some neurotransmitters, control of ionic balance 
in brain parenchyma [45-47]. These functions of astrocytes serve 
the maintenance of brain homeostasis. Furthermore, it is reported 
that astrocytes protect endothelia from oxidative stress [48] and 
supply glutathione (GSH) to neurons and that astrocytes regulate the 
metabolism of ascorbic acid to protect neurons [49,50].

In the present study, we examined the effects of Ex-4 on EC-SOD 
expression and activity in cultured rat brain astrocytes. We found that 
exposure to Ex-4 increased the EC-SOD expressions in mRNA and 
protein, and SOD activities on the cell-surface and in the medium were 
not significantly affected by Ex-4.

Experimental procedures
Materials

 Deoxyribonuclease I (DNase I; DN-25), trypsin, SOD (from 
bovine liver), xanthine oxidase (XOD; from milk), nitrotetrazolium 
blue chloride (NBT), anti-β-actin antibody and horseradish peroxidase 
(HRP)-conjugated goat anti-rabbit IgG (whole molecule) antibody 
were purchased from Sigma Chemical Co. (St Louis, MO, U.S.A.). 
Dulbecco’s modified Eagle medium (DMEM) and horse serum were 
obtained from Gibco BRL (Grand Island, NY, U.S.A.). Fetal bovine 
serum was obtained from Nichirei Biosciences Inc. (Tokyo, Japan). 
HRP-conjugated goat anti-mouse IgG (H+L) antibody was purchased 
from Bio-Rad Laboratories Inc. (Hercules, CA, U.S.A.). Hypoxanthine 
(HPX) was from Wako Pure Chemical Industries Ltd. (Osaka, 
Japan). Water soluble tetrazolium-1 (WST-1, 2-(4-iodophenyl)-3-(4-
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primers, mixture of dNTP (deoxyribonucleotide triphosphate), RNase 
inhibitor, Buffer RT and Omniscript Reverse Transcriptase (Omniscript 
Reverse Transcription Kit; Qiagen). Reverse transcriptase reaction was 
run at 37ºC for 60 min, followed by inactivation of the enzyme at 94ºC 
for 5 min, and an aliquot of synthesized complementary DNA was used 
for Realtime PCR. 

Realtime PCR was performed in buffer containing SYBR® 
Green Realtime PCR Master Mix (Toyobo) and each primer for the 
corresponding EC-SOD and 18S rRNA. PCR was performed with 
primers specific for each EC-SOD and 18S rRNA described below. 
The conditions of each PCR cycles for these primers were as follows: 
denaturation at 95ºC for 15 sec; annealing at 60ºC for 15 sec; and 
extension at 60ºC for 30 sec. The results were analyzed using Realtime 
PCR System (StepOne™; Applied Biosystems).

Specific primers

EC-SOD:  sense            5’-ATGGTGGCCTTCTTGTTCTGC-3’

                  antisense      5’-CCAGATCTCCAGGTCTTTGGA-3’

18S rRNA: sense          5’- AGGTCTGTGATGCCCTTAGA-3’

                  antisense      5’- CCATCCAATCGGTAGTAGCG-3’

Western blotting

Cultured astrocytes were homogenized in 20 mM Tris-HCl (pH 
7.5) buffer containing 1 mM EDTA and protease inhibitor cocktail 
(Sigma P8340). Each homogenate was added at a volume ratio of 4:1 to 
50 mM Tris-HCl buffer (pH 6.8) containing 50% glycerol, 10% sodium 
dodecyl sulfate, 0.05% bromophenol blue and 25% 2-mercaptoethanol, 
followed by mixing and boiling at 100ºC for 5 min. Each aliquot in 
a certain amount of protein was loaded on a 10% polyacrylamide 
gel for electrophoresis at a constant voltage of 120 V for 2 h at room 
temperature and subsequent blotting to a polyvinylidene fluoride 
membrane previously treated with 100% methanol. After blocking 
by 5% skimmed milk dissolved in 20 mM Tris-HCl buffer (pH 7.5) 
containing 137 mM NaCl and 0.05% Tween 20, the membrane was 
reacted with antibodies against EC-SOD or β-actin followed by a 
reaction with anti-rabbit or anti-mouse IgG antibody conjugated 
with peroxidase. Proteins reactive with those antibodies were detected 
with the aid of chemiluminescence detection reagents (Immobilon™ 
Western HRP Substrate; Millipore Corporation, Billerica, MA, U.S.A.) 
and analyzed with lumino-image-analyzer (LAS-4000, Fujifilm). The 
graphs showed EC-SOD/β-actin ratio of the density of detection bands.

Protein concentrations were determined by the method of 
Bradford using CBB color solution (Nacalai Tesque, Kyoto, Japan), 
according to the manufacturer’s protocol, with bovine serum albumin 
as the standard.

Measurement of SOD activity on cell surface
SOD activity on cell surface was measured by the assay as described 

previously [43]. After the cells were rinsed with HEPES-buffered Krebs 
Ringer solution (HKR; 130 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO4, 
50 mM HEPES, 1 mM NaH2PO4, 5.6 mM glucose, 1.8 mM CaCl2, pH 
7.4) twice, 90 µl of 0.3 mM HPX, 0.3 mM DTPA and 33 µM WST-1 
in HKR was added into each well. Then the reaction was started with 
the addition of 20 µl of 46 mU/ml XOD and the absorbance (Abs) at 
450 nm was immediately measured as blank, using a microplate reader. 
The plate was incubated in a CO2 incubator for 30 min, and then 
the absorbance was measured. For standard, various concentrations 
of SOD enzyme (Sigma S-8160 from bovine liver) were added into 

cell-free wells in the same plate; then, the absorbance was measured 
simultaneously. 

The standard curve was established as follows. The absorbance at 
30 min was used; at first, the blank values (time 0) were subtracted. 
The difference between each value and 0 SOD was plotted against the 
standard SOD concentrations: the central linear part of the sigmoid 
curve was used for the calculation of SOD activity. This procedure is 
based on the inhibition of O2

– detection with an artificial O2
– generator; 

therefore, the procedure is not applicable when the cells themselves have 
O2

– generating activity. We examined the color development of WST-
1 added on the astrocytes without addition of XOD: the absorbance 
change was less than 0.002 Abs/h and revealed that astrocytes did 
generate almost no O2

–.

Measurement of SOD activity in medium
We had attempted to measure the SOD activity in the medium 

released from the cell similarly as described above; however, the 
measurement was disturbed by some components of the DMEM. 
Therefore, in order to measure the SOD activity released into the 
medium, we used HKR for the drug-stimulation reaction instead of 
DMEM. It is supplemented that cell viability in HKR was not different 
from that in DMEM with and without LPS (data not shown).

Data analysis
For statistical analysis of the data, one-way ANOVA followed by 

Tukey-Kramer multiple comparison procedure or Student’s t-test was 
used. Differences between treatments were considered statistically 
significant when p < 0.05.

Results
Expression of EC-SOD mRNA increased in astrocytes after 
Ex-4 stimulation

Cultured astrocytes were stimulated with 10 nM Ex-4 for indicated 
time, and then the mRNA expressions of EC-SOD were analyzed by 
realtime RT-PCR. The expression of EC-SOD mRNA was significantly 
increased by 10 nM Ex-4 for 3 h exposure, it was remarkably increased 
at 6 h and the increased level was sustained up to 24 h (Figure 1).

Figure 1. Time course of EC-SOD mRNA expression in cultured astrocytes after Ex-4 
exposure.  Cultured astrocytes were stimulated by 10 nM Ex-4 for 1, 3, 6, 24 h. The 
expression of mRNA of EC-SOD was assessed by realtime RT-PCR. Data are mean ± 
S.D. of three samples from different cell preparations. *P < 0.05, **P < 0.01, significantly 
different from control.
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Effect of Ex-4 and/or exendin (9-39) on the EC-SOD protein

 In addition to the mRNA level, we examined the level of EC-SOD 
protein. The cells were stimulated with various concentrations of Ex-4 
for 24 h, and then the expression of EC-SOD protein was assessed by 
western blotting. The expression level of EC-SOD protein increased in 
a dose-dependent manner and with 10 nM Ex-4, significantly (Figure 2A). 

The cells were preincubated with 100 nM exendin (9-39), an 
antagonist of GLP-1 receptor, for 30 min and stimulated by 10 nM Ex-4 
for 24 h, and then the expression of EC-SOD protein was assessed by 
western blotting. Preincubation with 100 nM exendin (9-39) inhibited 
Ex-4-increased EC-SOD expression (Figure 2B). 

Effect of Ex-4 on cell-surface SOD activity and the cell viability

We examined the effect of Ex-4 on cell-surface SOD activity 
in cultured astrocytes. The cells were incubated with various 
concentrations of Ex-4 for 24 h, and washed with HKR. Then, SOD 
activity on the cell-surface was assayed. The activity was not significantly 
affected (Figure 3A). 

We also examined the effect of Ex-4 on cell viability in cultured 
astrocytes. The cells were incubated with various concentrations of 
Ex-4 for 24 h, and cell viability was assessed by MTT assay. Cell viability 
was not affected by Ex-4 used in the present study (Figure 3B).

Effects of Ex-4 and/or exendin (9-39) on SOD activity in the 
medium

We examined the effect of Ex-4 on SOD activity in the medium. 
Cultured astrocytes were preincubated with 100 nM exendin (9-39) for 
30 min and stimulated by 10 nM Ex-4 for 24 h in HKR, and then SOD 
activity in the medium was assayed. The activity was affected by neither 
Ex-4 nor exendin (9-39) (Figure 4).

Discussion
In the present study, we demonstrated that the expressions of 

EC-SOD, both of mRNA and protein, were induced when the cells 
were stimulated by Ex-4 in cultured rat cortex astrocytes. However, 
the activities of SOD on the cell-surface and in the medium were not 
significantly affected by Ex-4. The Ex-4-increased EC-SOD expression 
was inhibited by an antagonist of GLP-1 receptor. These results suggest 
that Ex-4 increases the expressions of EC-SOD mRNA and protein via 
binding to GLP-1 receptor.

In cultured astrocytes, 10 nM Ex-4 increased EC-SOD mRNA 
time-dependently for 1-24 h, and 1-10 nM Ex-4 exposure for 24 h 
increased EC-SOD protein in a dose-dependent manner, significantly 
with 10 nM. The increased expression of EC-SOD protein by Ex-4 was 
blocked by exendin (9-39), an antagonist of GLP-1 receptor. GLP-1 
receptor is a G-protein coupled receptor, and binding of agonists to 
it causes activation of adenylate cyclase to increase cAMP and activate 
protein kinase A [52]. Ex-4 treatment reported to induce the elevation 
of intracellular cAMP levels in astrocytes [52]. The promoter region 
of EC-SOD contains various regulatory elements including cAMP 
response element (CRE) [53]. Therefore, Ex-4 in the present study 
might increase EC-SOD mRNA via intracellular cAMP production. 
Moreover, the promoter region of EC-SOD contains various regulatory 
elements other than CRE, including antioxidant response element, 
activator protein-1 binding sites, NF-κB motifs, and xenobiotic 
response elements [53]. Further investigation is necessary to elucidate 
the total mechanisms of the EC-SOD induction by Ex-4 stimulation, 

150

Figure 2. Effects of Ex-4 and Ex (9-39) on expression of EC-SOD protein in cultured 
astrocytes.  (A) Cultured astrocytes were stimulated by various concentrations of Ex-4 for 
24 h. (B) The cells were preincubated with 100 nM Ex (9-39) for 30 min and stimulated by 
10 nM Ex-4 for 24 h. The expression of EC-SOD protein was detected by western blotting. 
Typical bands of western blotting for EC-SOD and β-actin proteins are shown in the 
photograph. The graph shows EC-SOD/β-actin ratio of the density of detection bands. Data 
are mean ± S.D. of five samples from different cell preparations. **P < 0.01, significantly 
different from control. #P < 0.05, significantly different from Ex-4.
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Figure 3. Effects of Ex-4 on the cell-surface SOD activity and the cell viability in cultured 
astrocytes.  Cultured astrocytes were stimulated by various concentrations of Ex-4 for 24 h. 
(A) After the stimulation, the cells were washed with HKR. Then, SOD activity remained 
on the cell-surface was assayed. (B) The cell viability was assessed by MTT assay. Data are 
mean ± S.D. of four samples from different cell preparations.

Figure 4.  Effects of Ex-4 and Ex (9-39) on activity of the released SOD in the medium.  
Cultured astrocytes were preincubated with 100 nM Ex (9-39) for 30 min and stimulated by 
10 nM Ex-4 for 24 h in HKR. The medium was assayed for the released SOD activity. Data 
are mean ± S.D. of four samples from different cell preparations.
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inclusive of other transcriptional factors as well as CRE-binding 
protein (CREB).

It was reported that Ex-4 administration protected neurons through 
the upregulation of antioxidants in ischemic rat brain [18]. However, 
in the present study, the activities of SOD on the cell-surface and in 
the medium were not significantly affected by Ex-4 treatment for 24 
h. The effects of Ex-4 on mRNA and protein only in EC-SOD among 
three isozymes of SOD were assessed in the present study; therefore, 
the effects of Ex-4 on the expressions of other two SODs, Cu/Zn-SOD 
and Mn-SOD should be further investigated. Moreover, it is likely that 
Ex-4 might affect the utilization efficiency of Cu2+ and Zn2+ which are 
contained as enzyme cofactors and needed for enzymatic activity of 
EC-SOD.

EC-SOD is a unique enzyme having the enzymatic activity in 
extracellular space and at least two steps are known to be occurred for 
secretion [27,54]. It was reported that N-glycosylation was essential for 
the transport of intracellular EC-SOD protein to cellular membrane 
[55]. Further, EC-SOD is known to be released through the proteolytic 
processing at binding region in various cells including glial cell line 
U1169 CG [56]. The C-terminal proteolytic processing of EC-SOD 
was reported to be regulated by redox state [57]. In the present study, 
these post-translational modifications might not be stimulated by 
Ex-4 treatment in cultured astrocytes although Ex-4 increased the 
expressions of EC-SOD mRNA and protein. Further investigation is 
needed to elucidate the effects of Ex-4 on SOD activity in more detail; 
however, the induced EC-SOD in astrocytes by Ex-4 exposure might 
play a role in neuronal protection.

Conclusion
In the present study, Ex-4 triggered the EC-SOD induction via 

binding to GLP-1 receptor in cultured astrocytes. EC-SOD induced by 
Ex-4 in astrocytes may play a role in extracellular anti-oxidative defense 
for surrounding neurons. The regulation of EC-SOD expression in 
astrocytes should be an important target in treatment of CNS diseases.
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