
Research Article

Global Drugs and Therapeutics

 Volume 2(3): 1-5Glob Drugs Therap, 2017         doi: 10.15761/GDT.1000119

ISSN: 2399-9098

Inhibitors of protein aggregates as novel drugs in 
neurodegenerative diseases
Pietrobono D, Giacomelli C, Trincavelli ML*, Daniele S* and Martini C
Department of Pharmacy, University of Pisa, Pisa, Italy

Correspondence to: Simona Daniele  and Maria Letizia Trincavelli, Department 
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy, E-mail: simona.
daniele@for.unipi.it; maria.trincavelli@unipi.it

Received: February 02, 2017; Accepted: February 20, 2017; Published: February 
24, 2017

Introduction
Neurodegenerative diseases (NDs) are characterised by the 

misfolding and aggregation of specific proteins [1]. For example, 
the pathological hallmarks of Alzheimer’s disease are represented 
by β-Amyloid (Aβ) peptide-containing plaques and intraneuronal 
neurofibrillary tangles composed of hyperphosphorylated protein tau. 
Meanwhile, Parkinson’s disease (PDs) presents brain inclusions of 
α-synuclein (α-syn), which constitutes the major component of Lewy 
bodies and Lewy neurites [2-4]. Such pathological protein aggregation 
relates to a complex self-assembly process involving the formation 
of small oligomers, larger protein complexes, and mature β-sheet-
rich fibrils. Whether prefibrillar aggregates (oligomers, protofibrils) 
or fibrils are accountable for neuronal death in NDs remains to be 
established [1,5].

Different therapeutic strategies attempting to reduce brain burden 
of protein aggregates have been developed [5] including: i) direct 
targeting of misfolded proteins; ii) drawing the protein excess out of 
the brain by peripheral administration of oligomer-binding agents (the 
so-called “sink effect”) [6-8]; iii) upregulating molecular chaperones 
or proteins involved in aggregate clearance [5]; iv) targeting post-
translational modifications that promote protein misfolding and 
aggregation [5]; v) the use of nanotechnological devices, and in 
particular multifunctional liposomes [9,10]. Herein, current literature 
on compounds able to prevent/disrupt protein aggregation, thus 
removing toxic oligomers, will be summarised [11].

α-Syn aggregation inhibitors
The α-syn oligomerization inhibitors have been deeply investigated 

(Table 1). Among synthetic compounds able to counteract α-syn 
oligomerization in preclinical studies, NPT200-11 [12] and ANLE138b 
[13,14] are rising as promising tool for the PD treatment. In particular, 
NPT200-11 has been shown to cross the blood–brain barrier with low 
toxicity in control subjects, completing successfully a phase I clinical 
trial (ClinicalTrials.gov Identifier NCT02606682). 

Small peptides able to control oligomerization have been developed 

as β-sheet breakers, taking into account that the aggregation site 
involves the 71-82 region of α-syn. In this respect, unmodified peptides 
[15] and N-methylated peptides [16] have been recently discovered 
and demonstrated their efficacy in vitro. Studies are ongoing to collect 
clinical data and additional information on the use of peptide able to 
induce a correct protein folding [17,18].

Among natural-based compounds, polyphenols such as baicalin 
[19], EGCG [20,21], tannic acid (TA) [22], resveratrol [23] and 
curcumin [24] have been emerging as potent molecules able to decrease 
α-syn assembling into oligomers. However, almost all the studies on 
these compounds are limited to the pre-clinical phase. 

Another pharmacological approach is represented by active 
or passive immunization based on α-syn antibodies [25]. Such 
immunogenic peptides mimic the C-terminus of α-syn [26], or can 
direct bind the oligomeric form of α-syn, or the Ser129 phosphorylated 
site of α-syn [27], which is a crucial site for α-syn accumulation [28].

Tau aggregation inhibitor
Tau aggregates have been targeted using several approaches, which 

have been reviewed elsewhere [29,30]. In the last decade, different 
classes of tau aggregation inhibitors (TAIs) have been reported, 
including polyphenols [31], porphyrins [32], phenothiazines such 
as Methylene blue [32], benzothiazoles/cyanines such as N744 and 
Riluzole [33], thioxothiazolidinones (rhodanines), phenylthiazole-
hydrazides, anthraquinones, and aminothienopyridazines (ATPZs) 
[30,33] (Table 2). 

Furthermore, small molecules belonging to TAIs have already been 
developed and tested in humans [29,34,35], even if with discrepancy 
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between the cell-based and/or in vitro data and the in vivo efficacy. 
Important pharmaceutical implications have been rising from the 
possibility to distinguish the tau–tau binding interaction from the tau–
tubulin binding one with new aggregation inhibitors [36,37]. Among 
these, the most promising compound is leucomethylthioninium 
(LMT, leucomethylene blue (MB), LMTX, TRx0237), developed by 
TauRxTherapeutics Ltd., Republic of Singapore, which is a second-
generation TAI for AD treatment. The numerous clinical trials that are 
currently ongoing for this compound and its derivatives (ClinicalTrials.
gov Identifier NCT01626391, NCT01689233, NCT01689246, 
NCT01626378, NCT02245568) are failing, probably due to the subject 
advanced stage of the pathology.

Several other chemical entities and compounds have been reported 

[38-40]. A new compound, PE859 (3-[(1E)-2-(1H-indol-6-yl)ethenyl]-
5-[(1E)-2-[2-methoxy-4-(2-pyridylmethoxy)phenyl]ethenyl]-1H-
pyrazole) has been shown to inhibit in vitro tau aggregation and to 
delay the onset and progression of motor dysfunction in vivo [38]. 
Moreover, 1,2-dihydroxybenzene-containing compounds have been 
shown to reduce tau oligomerization [39] in vitro or in vivo. 

Aβ aggregation inhibitor
Small derivatives have been developed that are able to interfere 

with Aβ aggregation by decreasing the oligomerization process and/
or by inducing a conformational change in β-sheet assembly and/or by 
inducing quick conversion of soluble aggregates into less toxic fibrils 
(Table 3) [1,41]. 

Among natural compounds, most Aβ inhibitors present a 
polyphenolic core [42], including resveratrol [43], myricetin [44], 
curcumin [45], caffeine [46]. 

As concern, newly synthesised compounds, ALZ-801 is an orally 
bioavailable prodrug of Tramiprosate, which has been demonstrated to 
reduce Aβ oligomers and neurotoxicity. 

Moreover, ALZT-OP1 results from the combination of two FDA-
approved drugs, cromolyn and ibuprofen. Consequently, it decreases 
neuronal death by reducing Aβ accumulation and suppressing 
neuroinflammation in the brain [47]. 

Another interesting small molecule is CSP-1103, able to 
inhibit brain deposition of Aβ plaques, reducing tau pathology and 
neuroinflammation, and reversing memory deficits in AD transgenic 
mouse model. Additionally, CSP-1103 restores normal microglial 
function by increasing phagocytosis and decreasing production of pro-
inflammatory cytokines. 

ELND005 is an orally bioavailable inositol stereoisomer that 
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Table 1. Structures of the mainα-syn aggregate inhibitors.
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causes a dose-dependent decrease in amyloid pathology and plaque 
accumulation in TgCRND8 mice. The completed Phase II AD 
study demonstrated ELND005 treatment led to reduction in myo-
inositol levels in the brain, an effect that is shared by other approved 
neuropsychiatric drugs such as lithium and valproic acid. In addition, 
ELND005 has been associated with a reduction in the levels of Aβ and 
tau proteins in the cerebrospinal fluid. 

Another therapeutic approach targets the nucleation site of 
aggregation. This region, known as the KLVFFA, is an hexapeptide 
sequence that facilitates monomer-monomer interaction, leading to 
dimer and oligomer formation [48,49]. Based on these findings, a few 
compounds have been identified and demonstrated to interact with the 
KLVFFA region [50]. 

Among the Aβ-anti-aggregating strategies, an anti-Aβ 
immunotherapy approach has been emerging. In particular, antibodies 
that recognize Aβ toxic species have been developed to bind and 
neutralize them; otherwise, the antibodies can stimulate microglial 
clearance, or induce Aβ exit from the brain [51-57].

Among antibodies, Aducanumab (BIIB037) is a high-affinity, fully 
human IgG1 monoclonal antibody against a conformational epitope 
found on Aβ, which is now in phase III trial. On the other hand, 
Crenezumab recognizes multiple forms of aggregated Aβ, including 
oligomeric and fibrillar species and amyloid plaques with high affinity. 
It has been engineered to clear Aβ excess and stimulate amyloid 

phagocytosis while limiting release of inflammatory cytokines, as a way 
to avoid side effects such as vasogenic edema [53]. 

Finally, Solanezumab is a humanized monoclonal IgG1 antibody 
directed against the mid-domain of the Aβ peptide, which recognizes 
soluble monomeric Aβ. It has been designed to sequester Aβ, shifting 
equilibria between different species of Aβ, and removing small soluble 
species of Aβ that are directly toxic to synaptic function [58].

Conclusions and future perspectives
Despite several efforts, inhibitors of Aβ, α-syn and tau protein 

deposition have failed in clinical trials. The inadequacy of the 
disease-modifying strategy, and the stage of the disease during the 
drug administration are only two of the reasons at the basis of the 
clinical trial failure. Indeed, several findings have suggested that the 
pharmacological treatment of NDs should start prior to the onset of 
clinical symptoms [59], and that each inhibitor may have a precise 
temporal window in which to be used, depending on the ND stage [1].

Drug combinations that capitalise on more than one therapeutic 
strategy will constitute the most effective treatment for NDs. 
Furthermore, the cooperation of Aβ, tau and α-syn in the pathogenic 
processes of NDs [60-62] is opening the way to broad-spectrum 
compounds potentially able to reduce the oligomerization of more than 
one protein. Rifampicin, a well-known antibiotic, can reduce prevent 
the aggregation of Aβ, tau and α-syn in vitro [62] and in a mouse model 
of AD. Future advance may be represented by the development of 
agents able to interfere with hybrid oligomers.      
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