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Burn injury induces global changes to the entire immune system 
resulting in suppressed immune function and increased susceptibility 
to infection. Patients with severe burns are more likely to die from 
sepsis due to the massive release of inflammatory mediators from the 
burn wounds [1]. The repair process of skin wound starts immediately 
during which various growth factors such as transforming growth 
factor beta (TGF-β) will release [2]. TGF-β is the growth factor affecting 
all cell types that are involved in all stages of wound healing [3]. TGF-β 
released by macrophages and platelets. It acts as a potent chemo-
attractant for macrophages, neutrophils, lymphocytes, and fibroblasts. 
TGF-β stimulates release of other growth factors and induces its 
own auto expression. In addition, TGF-β plays an important role in 
tissue fibrosis and post- injury scarring [4]. Abnormal levels of pro 
inflammatory mediators, such as tumor necrosis factor alpha (TNFα) 
interleukin-1b (IL-1b), interleukin-6 (IL-6), interleukin-8 (IL-8), and 
interleukin-10 (IL-10), have reported both systemically and locally in 
burn patient. A recent and interesting study indicates that genetically 
determined individual differences in IL-10 production might influence 
the susceptibility to septic complications in burned patients [5]. [6] 
showed that the circulating levels of the pro inflammatory cytokines, 
IL-6 and interferon-gamma (IFN-γ) were higher in rats with full 
thickness burns as compared to rats with only partial thickness burns, 
one hour after burn injury. The authors suggested that early elevation 
of IL-6 and IFN-γ) can prolong inflammation in full-thickness burns. 
Interleukin 10 (IL-10) is a potent anti-inflammatory cytokine that plays 
a crucial, and often essential, role in preventing inflammatory and 
autoimmune pathologies [7,8]. Deficiency or aberrant expression of 
IL-10 can enhance inflammatory response to microbial challenge but 
also lead to development of inflammatory bowel disease and a number 
of autoimmune diseases [9,10]. For centuries, silver compounds and 
ions have extensively used for both hygienic and healing purposes, 
due to their strong bactericidal effects, as well as a broad-spectrum 
antimicrobial activity [11,12]. It seems that silver shows a multilevel 
antibacterial effect, due to blockage of respiratory enzyme pathways, 
alteration of microbial DNA and the cell wall [13]. Silver is applied 
to burns, either in the form of impregnated bandages or as a cream 
containing silver sulfadiazine as the active agent, considered the 
benchmark silver product [14]. The antimicrobial mechanism of 
AgNPs is generally considered as a multi-factor, multi-way, and multi-
target process [15,16,17]. AgNPs can attach to the cell membranes and 
interact with the molecules on the membranes, which will damage the 
integrity and permeability of the membranes and thereby leading to 
the cytomorphosis and the leakage of intracellular contents [18,19]. 
And the reactive oxygen species (ROS) produced by AgNPs and silver 
ions released from AgNPs not only damage the cell membranes but 
also react with the molecules in the functional proteins and DNA, 
which will interfere the metabolism and DNA duplication [20,21]. 
AgNPs with more reactive facets had enhanced affinity with the cell 
membranes and increased dissolution rate of silver ions, which resulted 

in the enhanced antimicrobial activity [22,23,24]. The antimicrobial 
spectrum of AgNPs is broader than that of common antibiotics. Most 
researchers normally select Escherichia coli and Staphylococcus aureus 
to study the inhibition of bacteria by AgNPs [25,26]. The antibiotic 
ability of AgNPs against E. coli, Staphylococcus aurous, B. subtilis, 
and K. mobilis enhanced with increasing the silver content [27]. [28] 
studied the biocide activity of the AgNPs on Pseudomonas aeruginosa 
(a gram-negative bacterium), is an opportunistic microorganism that 
can cause severe, life-threatening infections. The bactericidal effect of 
AgNPs depends on different parameters including size, shape, and 
the surface charge of the particles. In this respect, smaller particles 
have greater antibacterial activity and shown to have two benefits. 
Firstly, they can easily reach the nuclear content of bacteria due to the 
structure of the bacterial cell wall, especially in gram-negative ones [29]. 
Secondly, they provide a greater surface area and therefore stronger 
bactericidal interactions [30,31]. NPs greater than 10nm accumulate 
on the cellular surface and compromise cellular permeability; however, 
NPs smaller than 10 nm penetrate into the bacteria, affecting DNA 
and the enzymes leading to cellular death [32,33]. Furthermore, the 
electrostatic attraction between positively charged nanoparticles and 
negatively charged bacterial cells is shown to be another important 
aspect with regard to the antimicrobial activity of the AgNPs [19]. 
Although gram-positive and gram-negative bacteria have differences 
in their membrane structure, most of them have a negative charge. 
The gram-negative bacteria have a layer of lipopolysaccharide at the 
external surface followed by a thin layer of peptidoglycan. On the 
other hand, the cell wall in gram-positive bacteria is mainly composed 
of a thick layer of peptidoglycan [34]. Macrophages will infiltrate the 
wound tissue at approximately 3 days after neutrophils infiltration 
post-wounding, and be involved in the ongoing inflammatory process 
by performing phagocytosis of pathogens and necrotic cells or debris. 
They will release cytokines, chemokine and growth factors, such as IL-
4, IL-1β and TNF-α to induce cell regeneration and tissue repair, as 
well as synthesis of collagen by fibroblasts and macrophages in healing 
tissue [35].  
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