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Introduction

We read with great interest the study by Chaikof and colleagues
published in Nature Biotechnology on the development of self-
assembling protein nanoparticles (ENTER) for cytosolic delivery of
nucleic acids and proteins (DOI:10.1038/s41587-025-02664-2). This
innovative platform addresses critical challenges in nonviral delivery,
particularly for gene editing and protein therapeutics, by enabling
efficient intracellular transport while minimizing toxicity.

1. Modular design and optimization of the delivery system

The core strength of ENTER lies in its hierarchical modular design
(Fig. 1a). Through four generations of iterative optimization, the
researchers engineered elastin-like polypeptide (ELP) nanoparticles
incorporating a hydrophilic corona, histidine-rich core, and
endosomolytic peptides (EEPs). Notably, EEP13—discovered via
machine-learning screening—demonstrated a 48% improvement in
protein delivery efficiency compared to benchmark peptides (Fig. 2c).
The V4-ELP-EEP13 system outperformed lipid nanoparticles (LNPs)
in mRNA and Cre recombinase delivery across multiple cell lines (Fig.
5h), highlighting its versatility.

However, the study did not fully explore cell-type-specific uptake
mechanisms. For example, do macrophages and hematopoietic stem
cells differ in their endocytic pathways when interacting with ELP
nanoparticles? Future studies could integrate receptor-mediated
endocytosis markers (e.g., clathrin, caveolin) to elucidate these
differences [1,2].

2. Endosomal escape mechanism and pH-responsive design

ENTER achieves endosomal escape through histidine protonation
and EEP-mediated membrane disruption (Fig. 1lc-f). Dynamic
light scattering revealed ELP nanoparticle disassembly under acidic
conditions, releasing EEP to destabilize endosomal membranes (Fig.
4g). This pH-responsive design minimizes free-peptide cytotoxicity
while achieving up to 90% gene editing efficiency (Fig. 5h). Interestingly,
siRNA delivery efficiency exhibited nonlinear dose dependence on ELP
concentration (Fig. 4h), suggesting endosomal escape efficiency may be
regulated by nanoparticle stability.

While TEM imaging (Fig. 1f) confirmed nanoparticle uniformity,
real-time visualization of endosomal membrane disruption was absent.
Future work could employ live-cell imaging to dynamically track ELP-
endosome interactions and membrane perturbation [3].
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3. Clinical translation potential and challenges

ENTER demonstrated remarkable in vivo efficacy: Intranasal
administration achieved 25.4% tdTomato+ cells in large airway
epithelium (Fig. 6b-e), surpassing LNPs (3.9% efficiency). Recombinant
ELP production via E. coli offers scalability and reduced immunogenicity
compared to viral vectors.

Key challenges remain for clinical translation: (1) Long-term toxicity
data, especially regarding repeated dosing and immune responses, are
lacking; (2) Lack of targeting moieties risks off-target effects in systemic
administration; (3) Limited EEP sequence diversity may hinder cross-
species applicability. Future studies should explore ligand conjugation
(e.g., antibodies, glycans) for organ-specific delivery [4-7].

Conclusion

The ENTER system represents a groundbreaking advancement in
nonviral gene delivery. Its modular design, efficient endosomal escape
mechanism, and biocompatibility position it as a powerful tool for
precision medicine. Future efforts should focus on optimizing targeting
strategies, assessing long-term toxicity, and scaling production for
clinical applications. ENTER’s emergence opens new dimensions in
therapeutic delivery, promising to transform gene editing and protein
replacement paradigms.
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