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Introduction
Chemical engineering is the technique of applying basic sciences 

(mathematics, physics, chemistry and biology) to implement physical 
and chemical processes in industrial plants. This discipline is a branch 
of engineering sciences that deals with the design, manufacture, 
and operation of processes in the chemical industries [1]. Chemical 
industries are those industries in which chemical, physical, or biological 
reactions convert raw materials into industrially valuable products. The 
main area of activity of a chemical engineer is supervising the three 
sections of mixing, reaction engineering, and separation. Accordingly, 
many industries such as refineries, petrochemicals, wood and paper, 
food, pharmaceuticals and medical equipment, cellulose, polymer, 
inorganic chemical, and many other industries directly benefit from the 
applications of chemical engineering. This part of chemical engineering, 
which is related to large-scale chemical industrial processes, is called 
process engineering. The separation processes used by a chemical 
engineer (such as distillation, extraction, etc.) are called unit operations 
and include mass, heat, and momentum transfer. These processes usually 
combine to complete the chain of chemical synthesis or separation of 
materials. The three basic physical laws in chemical engineering are the 
principles of mass, energy, and momentum conservations. Material and 
energy transfer in a process is evaluated using mass and energy balance 
for the whole unit, unit operation or part of it. Chemical engineers 
apply the principles of thermodynamics, reaction kinetics, and transfer 
phenomena to perform an industrial process [2-4].

In recent years, as a result of the increasing synergistic advancement 
of science and technology, new aspects of science and technology have 
emerged every day that has not been discussed until recent decades. 
Recent advances in nanoscience and nanotechnology have made it 
possible to produce very tiny tools and equipment that enable humans 
to control the movement of very small volumes of fluids or particles 
suspended in them. With this equipment, many difficult, complex, 

and parallel processes can be performed in a short time, at low cost, 
and more easily. With this equipment, many difficult, complex, and 
parallel processes can be performed more easily in a short time, and 
at a low cost. By manipulating materials and equipment at the micro 
and nano scales, researchers have been able to produce new materials 
with advanced and intensive properties. The miniaturization of tools 
and technologies at the micro and nano scales has led to a revolution 
in chemical engineering, as exemplified by the advent of microchips 
in the computing and computer industries [5]. Chemical microsystems 
have special potential. To meet the diverse and emerging needs of 
the chemical industry, modern chemical engineering is necessary to 
meet the needs of the market as well as the production of products 
with micro-scale characteristics in order to overcome the process and 
environmental constraints of traditional large-scale processes. To this 
end, it is important to understand the relations and differences among 
small-scale phenomena to the characteristics and behavior of large-
scale processes [6].

Traditional areas of expertise in chemical engineering, including 
transfer phenomena, process design and analysis, and commercialization 
skills, have evolved, and new areas of expertise in this engineering 
major at molecular and micro/nanometer scales, especially in biological 
systems, in It is increasing [7]. In this regard, many industrial process 
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equipment related to the chemical industry, called unit operation 
equipment, previously used in traditional chemical engineering on 
macro and meso scales, are downsizing, an activity that began decades 
ago by pioneers miniaturizing the equipment [8]. These include mixers, 
reactors, pumps, tubes, and valves, now referred to as micromixers, 
micro-reactors, micropumps, micro/nanotubes, micro-valves, and 
more [6]. Table 1 shows a number of unit operation equipment in both 
macro and micro/nano scales.

Micro/nanoscale systems were initially thought to be merely 
scaled-down examples of large-scale systems. Advances in micro-and 
nanotechnology have proven that the problem is far more complex than 
downsizing the geometry of the device, and a better understanding of 
the properties is needed. For example, in micro-and nanoscale systems, 
where the dimensions of the system are very tiny, the surface-to-
volume ratio is very high, and therefore capillary and electrokinetic 
effects, which may be negligible in large-scale processes, become very 
important. In fact, effective forces and mechanisms change with scale, 
and this unique feature has led scientists to use such systems to control 
fluid flow. For example, for a cube, if one dimension is reduced 10 times, 
its volume is reduced 1000 times. Therefore, the force of gravity, which 
is proportional to mass, is also reduced 1000 times. At the same time, 
the frictional force caused by contact with the surrounding objects 
is reduced by only a factor of 100 because this force depends on the 
surface. As objects get smaller, surface forces such as friction become 
much more important than gravity. For further explanation, scaling 
analysis for fluid forces, electromagnetic forces, electrostatic forces, and 
surface tension is shown in Figure 1 [9].

This review article examines the relationship and differences 
between phenomena at the macro and micro/nanoscales and discusses 
many recent developments in chemical engineering regarding 
equipment downsizing and their applications. Other cases mentioned 
in this article are the shortcomings of traditional chemical engineering 
textbooks that have been compared with the new texts required by this 
engineering discipline.

Motivations towards equipment downsizing
There are many specific motivations that justify human 

determination to use micro/ nanosystems. One of the major advantages 
of micro-systems is that they have a high surface-to-volume ratio. 
However, in addition to the high surface-to-volume ratio, the high 
rate of heat and mass transfer in these systems has led scientists to 
use micro and nanoscale equipment to perform separation, reaction, 

and tracking processes. Other incentives for equipment downsizing 
include process intensification; Optimization and integrated control 
of strategies; Ability to integrate multiple features into one device; 
Leading processes towards cleaner and cheaper technologies (reducing 
the cost of purchasing materials for smaller equipment), lower energy 
consumption, higher safety and less waste of raw materials.

For example, downsizing chemical reactors has a positive effect on 
chemical processes. In fact, as the surface-to-volume ratio increases, so 
does the rates of mass and heat transfer, which prevents hot spots from 
forming in micro/nano-reactors, where intense exothermic reactions 
occur. Also in such systems, the possibility of creating dead or blind 
spaces is very weak. These reactors are used in situations where there 
is a need to produce small quantities of specific products. Therefore, in 
situations where it is necessary to react at very high temperatures or 
pressures, or in situations where the reaction environment is toxic and 
hazardous, the use of micro-reactors is much safer than conventional 
reactors [10]. It is very easy to control the flow and concentration of 
fluids in micro-reactors; therefore, using these types of equipment, it is 
possible to produce products with predetermined characteristics with 
high efficiency. For this reason, the use of micro-reactors in the synthesis 
of nanostructured materials, whose size, size distribution, geometry, and 
structure are very important, has been widely welcomed [11].

Factors facilitating the entry of engineering disciplines 
into the field of micro and nano

Recent advances in micro/ nanotechnology owe much to new 
human capabilities in measuring and controlling individual structures 
at the micro/nanoscale. The increasing development of new tools for 
the characterization of materials and their manufacturing technology 
has played a very important and fundamental role in human progress 
towards micro/ nanotechnology. These tools enable the eyes to see 
and the fingers to control the nanostructures. In fact, micro/nanoscale 
process management owes much to technological advances in the 
following two areas:

1. Manufacture of laboratory instruments with the ability to 
measure, analyze, and observe at the micro/ nanoscale

In various engineering and medical sciences, the subject of 
measurement and characterization is of key importance. So that 
the physical and chemical properties of materials depend on the 
raw materials used as well as the microstructure obtained from the 
manufacturing process. For example, to identify raw materials, it is 
obvious that the type and amount of impurities, geometry and particle 
size distribution, crystal structure, and the like affect the nature and 
quality of the product. Therefore, the more powerful measuring and 
characterizing devices are available, the more accurate control of raw 
materials would take place. In addition, to study microstructures, 
microscale identification and analysis tools are needed. In 
microstructure technology, the microscopic structure of materials, 
the type of phases, their geometry, size, quantity, and distribution are 
studied in detail. Until the beginning of the new century, devices could 
not analyze particles on a scale smaller than micro, but now with the 
advancement of science, devices with the ability to measure particle size 
with high accuracy at the nanometer scale and even smaller have been 
made [12]. Table 2 provides a number of different techniques used to 
characterize micro/nanoparticles.

2. Manufacture of micro-scale process equipment (such as 
microfluidic devices)

The second factor that led to the entry of engineers into the world 
of nanotechnology was the acquisition of tools for the production of Figure 1. Scaling of fluid forces, electromagnetic forces, electrostatic forces and surface tension
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Measurement technique Characterization Sensitivity Reference

Atomic Force Microscopy (AFM)

Measurable properties: Geometric morphology, adhesion 
distribution, friction, surface impurities, material of different surface 
points, elasticity, magnetism, chemical bonds, surface electric charge 
distribution, and electrical polarization

8 μm to 1 nm [13]

Nuclear Magnetic Resonance (NMR) Identification of chemical molecules, atomic composition, Effect of 
ligands on nanoparticle shape, nanoparticle size Up to 1 nm [14]

Transmission Electron Microscopy TEM) Determining the size and shape of particles Up to 1 nm [15]

X-ray Photoelectron Spectroscopy (XPS) Identify elements on the surface, identify the experimental formula 
for analyzing the composition of samples ≥ 100 nm [16]

Fourier Transformed Infrared Spectroscopy (FTIR) Determining the structure and measuring chemical species -- [17]
Dynamic Light Scattering (DLS) Determining the distribution of particles in solutions and suspensions -- [18]
Brunauer-Emmett-Teller (BET) Surface area, and characterization of nanopores 1 to 300 nm [19]

Table 2. Some of the micro/nanoparticle characterization techniques

Equipment Macro scale Micro scale

Turbine
(a rotary mechanical device that extracts energy from 
a fluid flow and converts it into useful work)

Reactor
(a device for containing and controlling a chemical 
reaction)

 
 A Leaf-(Inspired Chemical MicroReactor)

Mixer
(a device for mixing the materials)

Pipe
(a tubular section or hollow cylinder, usually but not 
necessarily of circular cross-section, used mainly to 
convey substances which can flow)

Pump
(a device that moves fluids (liquids or gases), or 
sometimes slurries, by mechanical action)

Valve
(a device or natural object that regulates, directs or 
controls the flow of a fluid (gases, liquids, fluidized 
solids, or slurries) by opening, closing, or partially 
obstructing various passageways)

Table 1.  A number of equipment and devices for unit operation in macro and micro scales
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the following, some applications of chemical engineering in the field of 
process miniaturization have been studied.

Microextraction

Liquid-liquid extraction or solvent extraction is a separation 
method in a two-phase system in which the extraction of the substance 
is based on its inclination to one of these two phases. The system usually 
consists of an aqueous phase and an organic phase. Due to the flexibility 
and scalability of the solvent extraction process, this process is being 
used in various applications in industry such as the extraction of metal 
ions and organic materials [31]. Conventional liquid-liquid extraction 
processes are usually performed in large columns or tanks with a 
capacity of hundreds of liters, and the phase contact and mass transfer 
rate are controlled using packings, flow distributors, or special agitators. 
Following the contact of the phases, the phase separation takes place by 
gravity and the phase free of the extracted substance is discarded. In 
these systems, intense mixing is required to shorten the time period 
that chemicals must travel to reach the aqueous-organic interface, 
and maximize the contact surface [32,33]. The need to mix phases for 
effective extraction requires the use of large volumes of aqueous and 
organic phases that prevent the use of solvent extraction devices for low 
volume materials, such as expensive chemicals or biochemicals, trace 
chemicals, and extraction of molecules at low concentrations.

To avoid these limitations and to use solvent extraction on a 
much smaller scale, various substrates have been developed, such as 
microchannels that use very small volumes of fluid. In fact, micro-and 
nano-scale extraction systems can be used in such situations. The tiny 
size of these systems has minimized the diffusion path, so that two-
phase mixing is no longer necessary. Also, the ratio of the contact 
surface of fluids to their volume is very large; Therefore, the mass 
transfer takes place at a high rate. It should be noted that using such 
systems, the extraction process can be performed continuously [10, 34-
36]. Figure 3 shows a micro-extraction system in which the interface 
between two parallel aqueous-organic streams forms the mass transfer 
surface [37,38].

Solvent extraction microfluidic equipment has been developed for 
a wide range of applications, including metal ion separation and DNA 
purification [39-47]. Sarkar, et al. investigated liquid-liquid biphasic 
flow patterns in microchannels [48]. Dai, et al. performed micro-solvent 
extraction of copper ions from water using a microchannel device. 
They used kerosene as a solvent [45]. Jahromi, et al. performed micro-
extraction of calcium ion using a type of crown ether as a solvent in 
a Y-shaped microchannel and investigated the hydrodynamics of two-
phase flow in the microchannel. Micro-extraction technology showed 
significant potential in reducing the reaction time and increasing the 
efficiency of calcium ion extraction compared to traditional extraction 
devices. So that in 9.5 seconds the extraction reached an efficiency of 
18.5% [49] Priest et al. performed parallel flow micro-solvent extraction 
using a type II amine as the solvent, as well as the excretion of the solution 
obtained from the refined feed containing high amounts of Pt chloride 
in a Y-shaped microchannel. Also, the simultaneous effect of scale-
up was investigated by increasing the number of microfluidic devices 
and various operational parameters on the rate of platinum extraction 
and recovery [50]. Abbasi, et al. in a study extracted and removed 
color pollutants from industrial effluents [37]. In another study, they 
studied the removal of drug contaminants from effluents [51]. Recently, 
research has been conducted on the extraction of chromium from the 
aqueous phase by rotating microchannels. As mentioned, these systems 
can also be used to separate DNA. Samla, et al. studied DNA extraction 
from a biological sample (blood) in a microfluidic medium. The latter 

small-scale parts and machines. Today, micro/ nanoscale channels and 
equipment can be fabricated using a variety of methods, and various 
techniques for making microfluidic devices are available to engineers. 
For example, photolithography, soft lithography, thermoforming 
techniques, etching, engraving, and laser photoablation may be used 
[13-20]. Qamar and Shamsi recently conducted a review of microfluidic 
equipment fabrication on flexible substrates such as paper and plastic [21].

Photolithography is the process of applying light to transfer 
geometric patterns, usually from a transparent mask, to a substrate 
through a layer of light-sensitive emulsion called a protective coating. 
Photolithography is essentially the generalized form of photography 
technology. First, something like a negative photographic film is made 
of the overall layout of the design. This negative, called a mask here, is 
used to replicate the design on a substrate. In photolithography, after 
placing a layer of light-sensitive polymer on the substrate surface, a 
homogeneous light beam passes through a mask and creates a pattern 
on the polymer. In the photolithographic process, after creating the 
design on the interface polymer, the lighted areas, with their resistance 
to corrosion, mediate the transfer of the design to the substrate; This 
process is very similar to the UV sealing technique [22].

Soft lithography is a set of techniques that uses a soft elastic material, 
usually polydimethylsiloxane (PDMS), to transfer designs to the 
substrate material. The main process involves the construction of elastic 
microchannels. These microchannels are designed in a special program 
and then printed on a transparent mask with high resolution or molded 
on a conventional chrome mask to be used as a mold or seal for the soft 
material. Polymer seals can also be used to make nanostructures [23].

Laser cutting is another technology that uses laser beams to cut 
objects. Laser cutting is done by using a laser beam from a strong laser 
output on objects that want to be cut. A small part of the object to be 
cut is melted, burned, or sublimated and removed from the body by the 
pressure of the gas, and finally, the cut surface is created with excellent 
quality [23,24]. Figure 2 shows an example of a microfluidic device 
made by laser engraving [25].

Chemical engineering activities and services in the field 
of micro/nanotechnology 

Miniaturized devices are used in many fields such as chemical 
processes, propulsion and power generation, electronics cooling, the 
aerospace industry, inkjet printers, and biomedical industries and 
chemical engineering plays a key role in many of these fields [26-30]. In 

Figure 2. View of a microfluidic device with a T-shaped channel made by laser cutting 
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activity can be very useful because of its vital role in clinical diagnosis 
and genetic analysis [52].

Micromixing

The mixing process is used to mix a volume of fluid in a chemical 
reaction, heat transfer, mass transfer, or multi-phase combination in the 
industry. The mixing mechanism is done in two ways, micro and macro. 
In micro mechanism, molecular scale is involved [53,54]. Laboratory 
micromixers and shakers are tools used to homogenize mixtures. These 
devices are an important part of laboratory equipment in the food, 
beverage, cosmetics, electronics, as well as laboratories related to life 
sciences, water and wastewater, and biotechnology [55]. Shakers mix 
materials by shaking. Shaker plate moves back and forth or rotates. 
The micromixer performs the operation of mixing fluid masses in two 
scales. There are several things that distinguish between shaker and 
micromixer. Micromixers are one of the most important components 
of a microfluidic device and are classified according to laboratory 
applications. On a large scale, fluids are mixed by convection, like 
mixing milk and coffee by stirring. In microsystems, fluids do not mix 
by convection, but when two fluid streams meet in a microchannel, 
they flow in parallel without creating a turbulent flow, and mixing is 
done by the penetration of molecules at the contact surface between the 
two fluids [56,57]. Figure 4 shows a microfluidic mixer [58].

Micromixers are divided into active and inactive categories. Passive 
type, without an external driving force and work only through channel 
geometry (like T and Y micromixers). On the other hand, in active 
micro-mixers, mixing is provided by an external driving force (such 
as mixing caused by micro blades). Figure 5 shows the classification of 
micromixers [59].

Nahr, et al. investigated the effect of the geometry of a microchannel 
on fluid flow and mixing. In this study, flow characteristics and mixing 
efficiency in three different microchannel geometries were investigated. 
The results showed that the mixing behavior is strongly dependent on 
the channel geometry [60]. In a study using flow imaging and ethanol-
soluble red and green inks, Koch, et al. tested horizontal micromixers 
[61]. In a theoretical study, Liu et al. numerically investigated the 
mixing of two fluids (water and glycerin water solution) in three-
dimensional spiral and checkered micromixers at Reynolds numbers 1 
and 10 and showed that the mixing performance was inversely related 
to glycerol content [62]. In another study, using phenolphthalein and 
sodium hydroxide solutions, Liu et al. experimentally tested the mixing 
performance of three-dimensional microchannels in two Reynolds 
numbers 6 and 70 and showed that increasing the Reynolds number 

Figure 3. (A) Microfluidic system for microextraction, (B) Schematic of solute extraction mechanism

Figure 4. Schematic of the T-shaped microfluidic mixer

Figure 5. Schematic of the classification of micromixers
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increases the mixability in the microchannel [63]. Shamsoddini, et al. 
simulated a micromixer equipped with a blade using the hydrodynamic 
method of incompressible particles and evaluated the performance of 
the micromixer in terms of mixing efficiency and type of blade state. 
They showed that the performance of the cross blade was better than 
that of the straight blade [64]. Nguyen and Wu conducted a review study 
on micromixers, their types, and applications [59]. Another study by 
Cai, et al. Examines recent advances in passive and active micromixers 
for the production of various microfluidic chips [65].

Synthesis of micro and nanoparticles

Due to the wide applications of nanoparticles in various fields, the 
synthesis of these materials is very important. Synthesis of micro and 
nano particles is done using micro and nano reactor equipment. At 
the macroscopic scale, the chemical reactor is a chamber that makes 
it possible to perform a reaction in a certain volume [66]. One of the 
advantages of using a reactor is the possibility of precise control of 
reaction conditions such as solvent, temperature, and stirring speed. At 
the micro and nano scales, chambers can also be created that separate 
a certain volume of the reaction mixture from the bulk medium. If a 
chemical reaction is trapped inside such a chamber, then the chamber 
is considered a micro or nano-reactor. The advantages of using these 
reactors include more control over the reaction, selectivity, separation 
of toxic and unstable substances from the mass environment, and 
consequently reduction of system toxicity [67]. Microreactors generally 
consist of a network of micro-sized channels deposited on a solid 
substrate. Microreactors are made of materials such as ceramics, glass, 
polymeric materials, stainless steel, silicon, etc [68-70]. In a general 
classification, nanoreactors are classified into two groups: natural 
nanoreactors and synthetic nanoreactors. Natural nanoreactors include 
bacterial protein microparticles, protein cages, and viruses. Synthetic 
nanoreactors are more diverse and include molecules, macromolecules, 
nanostructures, and porous solids. The application of micro / nano-
reactors has made significant progress in the last two decades [71].

The high surface-to-volume ratio of micro / nano-reactors results in 
more efficient chemical reactions (higher mass transfer and higher heat 
transfer). Also, this high surface-to-volume ratio causes the reactants to 
communicate more, and as a result, the chemical reaction takes place 
much faster. Therefore, the residence time in these reactors is less than 
conventional systems [72]. Researchers believe that by using micro-
reactors, about 30% of chemical and pharmaceutical products can be 
produced more efficiently. Due to the small size of the micro-reactors, 
the reaction is faster, and the reaction is easier to control. Therefore, 
the use of micro-reactors greatly reduces production costs. Reactions in 
these small spaces can be very carefully controlled, a feature of micro-
reactors that allows reactions to be performed in a safe, clean, and, of 
course, highly efficient environment [73]. The technologies of micro-
reactor and micro-process are mainly used in laboratories to synthesize 
organic matter, and small-scale research has been conducted, both in 
academia and in industry.

Wagner and colleagues were the first to synthesize gold 
nanoparticles using a micro-reactor. In this study, ascorbic acid was 
used as a reducing agent and polyvinylpyrrolidone as a stabilizer (to 
prevent the accumulation of nanoparticles). The size of nanoparticles 
produced in this study was reported in the range of 15-24 nm [74]. 
Singh, et al. succeeded in chemically synthesized gold and silver 
nanoparticles in a micro-reactor. The advantages of this micro-reactor 
were continuous flow, low solvent content, faster reaction, less loss, and 
better reaction control [75]. Lin and colleagues were able to synthesize 
silver nanoparticles using a continuous flow tubular micro-reactor 

[76]. Krishnadasan, et al. synthesized cadmium selenide nanoparticles 
using 170 μm wide, 80 m deep, and 40 cm long a glass micro-reactor 
[77]. A typical glass micro-reactor is shown in Figure 6 [69]. Song et al 
synthesized cobalt nanoparticles using a polymeric micro-reactor [78]. 
Wang, et al. synthesized 10 nm titania nanoparticles using ceramic / 
glass microreactors [79]. Appalakutti, et al. synthesized copper chromite 
nanoparticles with a size in the range of 192–300 nm in a continuous 
flow micro-reactor. In this study, copper nitrate and chromium nitrate 
were used as precursors [80]. In a recent study, the extensive synthesis 
of inorganic nanoparticles (Au, Ag, Se, and mixed oxides of Cu, Co, Ni, 
Ge, and Ta) in parallel nanoreactors was investigated by Jibril, et al. [81].

Energy production

One of the methods of energy production on the micro and 
nanoscale is the use of micro-fuel cells. Micro-fuel cells are devices 
that use electrochemical reactions to generate electrical energy [82,83]. 
Using a silicon chip, Pattekar et al designed a micro-reactor for the 
methanol regeneration reaction to produce hydrogen. This hydrogen 
is used in micro-fuel cells. The efficiency of this cell was 85-90% and its 
power generation was 8-10 watts. They mounted equipment such as a 
temperature and pressure sensor, and a filter catalyst on a microreactor 
chip to try to apply conventional equipment in non-microreactors to 
the microreactor. The result was proper control and monitoring of the 
reaction. Figure 7 is a picture of a microreactor made by this group 
[84]. A recent review study of microfluidic fuel cells with different types 
of fuel was conducted by Wang, et al. In this study, paper-based, non-
pumped microfluidic cells are introduced, as well as the prospects for 
the development and future applications of micro-fuel cells [85].

Another method of energy production is the use of electrostatic 
properties in micro-and nanochannels. When the inner walls of 
the nano-channel have an electric charge, they exhibit ion-selective 
behavior. In other words, due to the electric charge of the wall, ions in 
the electrolyte possessing an opposite charge to the wall are absorbed 
by the wall, and ions of similar charge are expelled from it. This 
phenomenon indicates the presence of an electrostatic effect in ionic 
channels. Similarly, an electrical double layer is formed near the surface 
of the channel. In addition, while the electrolyte solution is flowing 
from the high-concentration electrolyte tank to the low-concentration 
tank in the nanochannel, a diffusive flow occurs in the flow direction. 
This phenomenon is reverse electrodialysis [86].

Figure 6. A typical glass micro-reactor
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Kang et al claimed that by using alumina nanopores in the potassium 
chloride concentration gradient, a significant power density (the 
amount of power per unit volume) could be obtained [87]. In addition 
to theoretical studies, the application of reverse electrodialysis was also 
experimentally investigated. Kim, et al. Showed that power density can 
be obtained from a silica nanopore [88]. Guo, et al. performed reverse 
electrodialysis experimentally on single-ion-selective nanopores 
and obtained maximum power output. One of the remarkable 
mechanisms of electrodialysis is the overlap of electrical double layers 
[89]. Hsu, et al. studied the rectification of ionic current in a conical 
nanopore. They noticed the effect of electroosmotic flow on current 
rectification [90]. In another study, they looked at the production of 
electricity by reverse electrodialysis through a conical nanopore [91]. 
Yeh et al. Investigated the power generated by the cone geometry of a 
negatively charged channel for different types of electrolytes [92]. In 
a study by Khatibi, et al. they modeled the electrokinetic process and 
the generation of electricity from a cone-shaped nanochannel coated 
with a polyelectrolyte layer using the Poisson-Nernst-Planck equation 
for ion transport and electrical potential, as well as the Navier-Stokes 
equation for electroosmotic flow. Figure 8 shows a schematic of the 
energy generation process by conical nanochannels. As can be seen, 
ionic species are transferred from the high concentration tank across 
the channel to the low concentration tank [86].

Pumping and creation of fluid flow

Micropumps are used to move fluids on a micro and nanoscale. 
Micropumps have been developed for many different applications, 
including fluid flow, drug delivery and biomedical experiments, cell 
culture, and more [93]. Figure 9 shows an example of the application of 
fluid flow in a microfluidic system for drug delivery. In this device, the 
drug is embedded in tanks with micro dimensions [94].

The first generation of micropumps was first reported in 1975 
and was soon developed by Smith and Van Lintel in the early 1980s, 
making them the first real MEMS micropumps. This sparked interest 
in reducing the size of the pump to new operational dimensions [95-
97]. Micropumps can be divided into mechanical and non-mechanical 
categories. Mechanical systems include moving parts [98]. Recently, 
attempts have been made to design non-mechanical micropumps that, 
due to their independence from an external driving force, can be used 
in areas where external driving force cannot be used. One of these types 
of pumps is capillary pumps that play an important role in microfluidics 
because they do not require external driving force. Glass capillaries and 
porous media, including nitrocellulose paper, can be integrated into 
microfluidic chips. Capillary pumping is widely used in lateral flow 
testing [99-101]. Recently, new capillary pumps have been developed 
with a constant pumping flow rate independent of liquid viscosity 
and surface energy [102]. Another non-mechanical micropump is the 
electroosmotic micropump. An electroosmotic pump (EOP) is used to 
generate fluid flow or pressure using an electric field [103]. Figure 10 
shows the differences in velocity profiles generated by electroosmotic 
and pressure-driven flows [104].

Figure 7. Micro-reactor image made by Pattekar et al.

Figure 8. Schematic of the energy generation process in soft nanopores

Figure 9. Wrist microfluidic system for drug delivery

Figure 10. Velocity profiles generated by pressure-driven flow (parabolic) and 
electroosmotic flow (almost plug)
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Electroosmosis has been used in various fields such as high-
performance liquid chromatography (HPLC) [105,106], cooling 
of microelectronic equipment [107], drug delivery [108-110], etc. 
In a review study, Wang, et al. studied electroosmotic pumps and 
their applications in microfluidic systems [111]. In another study, 
Chakraborty and Ray investigated the flow rate control by applying 
pulsed electric fields to circular microchannels using some of the 
intrinsic properties of the electroosmosis phenomenon [112]. Sadeghi, 
et al. studied the effect of combining both electroosmotic and pressure-
driven flows in a flat microchannel parametrically [113]. Another 
method of creating fluid flow is to use the diffusioosmotic phenomenon 
in micro and nanochannels. Diffusioosmotic flow is an electrokinetic 
phenomenon that uses a concentration gradient to stimulate flow 
instead of conventional driving forces. Hoshyargar, et al. studied the 
diffusioosmotic current in the microchannel. Their results showed that 
in certain conditions, the velocity profile in this type of flow can be 
flatter than that of the electroosmotic stream [114,115].

Separation and detection of particles and molecules

One of the best and most feasible methods for separating 
molecules and analyzing a wide range of ionized analytes is the use of 
electrophoresis [116]. Electrophoresis is one of the major electrokinetic 
phenomena discovered by Reuss in 1807 [117,118]. He observed that 
clay particles were dispersed in water by an electric field [118]. The 
term electrophoresis refers to the movement of charged compounds 
or particles in a solution (liquid medium) under the influence of an 
electric current. Molecules move at different speeds depending on the 
type of molecule, the size, as well as the different electrical charges. 
Electrically charged chemical compounds depending on their type of 
electric charge move towards the pole of the anode or cathode. The 
electrophoresis separation technique is much more convenient and less 
expensive than other methods and has undeniable advantages. Analytes 
that are of particular interest are peptides, amino acids, nucleic acids 
and oligonucleotides, DNA, nucleotides, organic acids, and small 
anions and cations in body fluids and tissues [119-124]. 

One type of electrophoresis that is the oldest type of this technique 
is called surface electrophoresis. In this method, a porous thermoplastic 
paper layer consisting of cellulose, acetic acid, and polymer gel is used 
[125,126].

Another type of electrophoresis is capillary electrophoresis (CE). 
In 1960, Hjerten described the first capillary electrophoresis device. 
He used this device to prove various theoretical concepts in capillary 
electrophoresis and was able to separate mineral ions, proteins, 
nucleic acids, and microscopic organisms using this technique [127]. 
This technique, which is mainly used in pharmaceutical and therapeutic 
chemistry, is used to separate large and small molecules in very thin tubes. 
In this method, separation becomes possible by high voltages [128,129]. 

Numerous theoretical and experimental studies in the field of 
separation have been performed using electrophoresis, especially 
capillary electrophoresis. Kohl, et al. studied the techniques and 
applications of two-dimensional separation systems based on capillary 
electrophoresis [130]. In a review study, Lu, et al. investigated the 
application of capillary electrophoresis in the separation of glycans 
[131]. In a review study, Heller, et al. Examined the principles and 
mechanisms of DNA separation by capillary electrophoresis [132]. 
Ganjizade, et al. Modeled the DNA sequencing in polyelectrolyte-
coated nanopores [133]. Figure 11 shows a schematic of the capillary 
electrophoresis process for the separation and arrangement of 
molecules [134].

Numerous other studies have been performed on particle analysis 
using capillary electrophoresis. In a review study, Ramos-Payan 
et al examined the application of capillary electrophoresis in the 
identification and analysis of high complexity samples such as biological 
fluids, single cells, etc. [135]. Paul, et al. Reviewed recent advances in 
the analysis of antibiotics by capillary electrophoresis. This study briefly 
describes the high degree of counterfeiting of antimicrobial drugs with 
a focus on its immediate health consequences [136].

Coating

One of the most important limiting factors for human beings from 
time immemorial to achieve their dreams has been the limitation in 
finding the right materials with the desired properties. Man has learned 
over time to meet his needs by improving the properties of materials. 
By manipulating and improving the properties of various available 
materials, new capabilities can be added to the products. Today, with 
the use of advanced technologies, new materials have been produced or 
the properties of existing materials have been improved. In this regard, 
coating technology is sometimes used to improve physical, chemical, 
and mechanical properties. One of the cases in which nanotechnology 
is currently widely and effectively used is coating processes as well as 
the production of nanostructured materials. Studies on nanocoatings 
show that their properties are significantly improved in many cases 
compared to conventional coatings. Nano-coatings have a better 
thermal expansion coefficient, higher hardness and toughness, and 
more resistance to corrosion, abrasion, and erosion compared to micro-
coatings. If the microstructure of the coating reaches the dimensions 
of nanometers (up to 10 nanometers), maximum hardness is obtained. 
Nano-coatings can have a hydrophobic or hydrophilic surface layer. 
Velayi, et al. used super-hydrophobic nano-zinc oxide to coat the 
stainless steel membrane and showed that the super-hydrophobic 
capability could be used to separate water and oil [137]. In another study, 
they synthesized super-hydrophobic Co3O4 surfaces with micro/nano 
hierarchical structures on a stainless-steel grid. They investigated the 
chemical stability and self-cleaning properties of the obtained super-
hydrophobic surface. The results of their evaluations showed that the 
super-hydrophobic surface of Co3O4 exhibited excellent self-cleaning 
performance [138].

Application of micro / nanostructured coatings is possible with 
different methods such as laser, thermal spraying, chemical, and 
electrochemical deposition, etc. [139-141]. One of these methods 
is electrophoretic deposition, which is a two-step process in which 
charged particles suspended in a suspension under the influence of an 
electric field move towards the electrode with the opposite charge and 
then become deposited as a dense film on the electrode. This method has 
the ability to create a coating with very good uniformity and control the 
thickness of the coating [142-145]. In one study, Abdollahi, et al. Used 
electrophoretic deposition to form ZSM-5 zeolite layers about a few 
microns thick on porous alumina. They succeeded in hydrothermally 
modifying the dense uniform zeolite membrane and showed that the 
thickness and density of the membrane can be modified by changing the 
Si / Al ratio of ZSM-5 zeolite particles [146]. In another study, Saberi, 
et al. studied the electrophoretic deposition of zirconia nanoparticles 
suspended in a mixture of different solvents (ethanol, butanol, and 
isopropanol) and triethanolamine as a dispersant. Their results showed 
that the corrosion resistance increases with decreasing voltage applied 
during the electrophoretic deposition process [147].

Another application of the coating is to create a thin layer on the 
surface of the micro/nanochannel walls in microfluidic equipment. In 
a theoretical and experimental study, Monteferrante, et al. investigated 



Ashrafizadeh SN (2021) Transition of chemical engineering from macro to micro/nano scales

 Volume 8: 9-18Front Nanosci Nanotech, 2021     doi: 10.15761/FNN.1000195

the effect of a polymer coating on the surface of a capillary tube on 
electroosmotic current. The density of the polymer, the thickness, and 
the charge of the capillary tube change as a function of pH and it is 
possible to reverse the flow under acid pH conditions. Therefore, by 
covering the surface of the capillary tube with a polymer layer, the 
electroosmotic current can be controlled [148]. In another study, 
Khatibi et al. Showed that coating conical nanostructures with dense 
polyelectrolyte layers significantly improved ionic current rectification 
[149]. Another benefit of coating is the superhydrophobicity of the 
inner surfaces of micro/nanochannels and ducts, which has always 
been of interest to researchers. Superhydrophobic surfaces reduce the 
fluid flow pressure gradient and can significantly reduce fluid transfer 
costs [150,151]. Speyer and Pastorino studied droplet transfer in a 
nanochannel coated with hydrophobic semi-flexible polymer brushes. 
They found that as the stiffness of the polymer chains increased, the 
droplet transfer rate decreased [152]. Figure 12 shows a schematic of 
a microfluidic device with channels covered by a polymer layer [153].

Micro/nano scale transport phenomena
In general, process design and control in micro/nano scale systems 

are influenced from channel geometry in regulating temperature, 
pressure, and fluid velocity distribution. The classification of 
microchannels is presented in Table 3 [154].

Therefore, to build such micro devices, it is important to understand 
the basic mechanisms involved in fluid flow and heat transfer properties 
in microchannels, because their behavior affects the transport 
phenomena for many microelectromechanical systems (MEMS) and 
microfluidic applications. Working on a micro or nano scale involves 
considering issues, features, and phenomena that may not matter at all 
on a macro scale. These characteristics are completely different for gas 
and liquid flows. In gas microflows, we encounter four important effects 
of compressibility, viscous heating, thermal creep and rarefaction. 
Liquid flows, on the other hand, are exposed to other micro-scale 
attributes such as surface tension and electrokinetic phenomena [155].

As size decreases, some common theories about the transport of 
fluid, energy, and mass need to be revised for validation [156]. As scale 
decreases, buoyancy, gravity, and inertia forces become less important, 
and viscous and surface forces become more and more prevalent. At 
the micro scale, the relative importance of forces in a two-phase water/
oxygen flow stream is reported as follows [157].

Surface forces> Viscose forces > Gravity forces > Inertial forces > 
Floating forces

In solving transport phenomena issues, most phenomena depend 
on many variables, the analysis of which using the original sample, and 
this number of variables, is costly and time consuming. This problem 
is solved using dimensional analysis. Thus, instead of using individual 
variables, we obtain the relevant dimensionless numbers and use them, 
resulting in a reduction in the number of variables. On the other hand, 
using the law of similarity resulting from dimensional analysis, the data 
of a small sample can be converted into design data of a real sample. 
The law of similarity can also be used to make connections between 
three transport phenomena. In calculations related to macro-scale 
transfer phenomena, dimensionless numbers such as Nusselt, Schmidt, 
Reynolds, Prandtl, Sherwood, etc. are used. Table 4 lists some common 
dimensionless numbers used in chemical engineering.

It is also common on the micro and nano scales to use dimensionless 
numbers for easier classification and understanding of flow behavior 

Figure 11. Schematic of capillary electrophoresis process for separation and sequencing 
of molecules

Figure 12. Schematic of a microfluidic device with microchannels covered by a polymer 
layer

Figure 13. Interdisciplinary approach to creating a new transport phenomena course in the 
manufacture of micro/ nanoscale equipment

The range of channel dimention Definition
3mm < Dc Conventional channels
200 μm < Dc ≤ 3 mm Minichannels
10 μm < Dc ≤ 200 μm Microchannels
1 μm < Dc ≤ 10 μm Transitional Microchannels
0.1 μm < Dc ≤ 1 μm Transitional Nanochannels
Dc ≤ 0.1 μm Nanochannels

Table 3. General schemes for channel classification
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[158]. In these scales, several dimensionless numbers are more 
important, some of which are listed in Table 5. These dimensionless 
numbers are defined according to the structural features of the 
microsystems.

The Reynolds number (Re) in micro dimensions is usually much 
smaller than 1, which indicates the importance of viscous forces in these 
dimensions. This indicates a significant pressure drop in the flow and 
eliminates the possibility of instability to mix in the system. In addition 
to the Reynolds number, the capillary number (Ca) (ratio of viscosity 
to surface force) is also very useful in describing and characterizing 
the behavior of multiphase flows in micro and nano-channels. Flow 
patterns in multiphase systems are classified as segmented flow (drop-
based) and parallel flow [159]. When the viscosity of the flow is constant, 
Weber number (We), which is a combination of Reynolds and Capillary 
numbers, can be used. Another important dimensionless number is 
the Mach number (Ma). In micro-and nanoscale systems, the flow of 
a compressible fluid such as air can also become incompressible due to 
the low flow velocity, if the local Mach number is less than 0.3. A scale 
of Ma <0.3 is required to eliminate compressibility but is not sufficient 
and conditions such as sharp density changes must be avoided so that 
the fluid flow is almost incompressible. Then incompressible equations 
can be used in both gas and liquid [157,158].

When a dilute gas is used as a fluid in microchannels, the velocity on 
the wall is not necessarily zero; In other words, the condition of sliding 
velocity and temperature jump for the fluid on the solid boundary may 
be established. The criterion for detecting and classifying gas flow is the 
Knudson dimensionless number (Kn) [160]. Due to the fact that gas flow 

within the slip regime within microchannels is one of the important 
topics in fluid mechanics and applied in industry, so the study of 
Knudson number in these systems is also important. In a numerical 
study, Hettiarachchi et al. Investigated the gas flow heat transfer in a 
rectangular microchannel. Considering the sliding conditions and 
temperature jump for the wall, they showed that sliding speed increases 
the Nusselt number (Nu) and temperature jump decreases this number, 
so the effects of both can reduce or increase the Nusselt number [161]. 
Another dimensionless number that can be important in micro and 
nano scales is the Damcohler number (Da). This number indicates the 
relationship and ratio of the duration of a chemical reaction (chemical 
reaction rate) to the rate of transport phenomena in a chemical system. 
In micro-reactors, this number, which is defined as the ratio of the 
reaction rate to the diffusion rate, acts as an indicator to check the 
performance of the reactor [162].

Fluid mechanics at the micro/nanoscale
There are differences in small-scale fluid flow modeling that result 

from 1) Deviation from the assumption of continuity for gas flow 2) 
Increase the effect of some additional forces such as electrokinetic 
forces 3) Uncertainty about the use of empirical factors from larger scale 
experiments and 4) Uncertainty in micro dimensional measurements 
including geometric dimensions and operational parameters [154].

Channels and microchannels are used in various types of devices 
that deal with single-phase fluid flow. Early applications included 
micromachines such as micropumps, microvalves, and microsensors. 
This has been addressed with advances in biology and life sciences due 
to the need for biological materials such as proteins, DNA, cells, and 
chemicals. Later, the field of micromixers attracted a lot of attention 
with the development of micro-reactors; Where two chemicals are 
mixed before entering the reaction chamber. The main component of 
micro/ nano-devices are micro-channels in which the establishment 
of flow requires the application of high-pressure gradients. In fact, 
among micromachine and microfluidic systems, microchannels are 
recognized as one of the basic elements for fluid transport. In addition 
to connecting various process chambers, microchannels are used to 
transport reactants, separate physical particles, control liquids, mix 
chemicals, and cool computer chips. The fluid transfer is done in 
several ways in the microchannels used in these devices. Two important 
methods of transporting liquids on a small scale are pressure-driven 
flows and electroosmotic flows.

Fluid flow within microchannels is present in most natural systems 
(such as the brain, lungs, kidneys, blood vessels) as well as man-made 
systems (such as turbines, heat exchanger cooling systems, and nuclear 
reactors for distillation units). The following four factors are important 
for fluid mechanics on a small scale:

• Micro/nanofluid flows are usually slow due to small length scales.

• Boundary conditions are more important in micro/nanosystems 
due to the large surface-to-volume ratio.

• Slip conditions may not always apply.

• Chemical composition at surfaces can affect the fluid mechanics of 
micro/nanoscale.

As mentioned earlier, electrokinetic phenomena become important 
on a small scale. Electrokinetics affects the transport phenomena and 
their governing equations. Electrokinetic transport phenomena can be 
used for flow control in microfluidic systems containing species and 
particles. The Navier-Stokes equation becomes in the form of Eq. 1 
considering the electrokinetic effects:

Dimensionless Definition Equation

Reynolds Inertia/Viscous

Grashoff Buoyancy/Viscous

Schmidt kinematic viscosity/Mass diffusivity

Prandtl kinematic viscosity/Thermal diffusivity

Froude Inertia/ Gravitational

Nusselt Convective/Conductive heat transfer

Table 4. Some common dimensionless and widely used numbers in chemical engineering

Dimensionless Definition Equation

Capillary Viscous/Interfacial

Bond Gravitational/Interfacial

Mach Flow velocity/the local speed of sound

Knudsen Mean free path/ Representative physical 
length scale

Damköhler Reaction rate/Diffusive mass transfer rate

Weber Inertia/Interfacial

Table 5. Some new and important dimensionless numbers in microscale systems

https://en.wikipedia.org/wiki/Mass_diffusivity
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                  (1)

where , , , and  are the pressure, viscosity, velocity, and density of 
the fluid, respectively. The parameter  represents the time and  of the 
electrostatic potential. The third term from the left (bolded) exerts the 
electrokinetic effect of microstructural considerations.

In nanofluid systems, similar to micro systems, in addition to 
volumetric forces losing their importance, intermolecular forces also 
join the group of forces influencing fluid behavior. A fundamental 
difference in the study of nano-dimensional fluid transfer with macro 
and even micro dimensions is that the assumption of fluid continuity 
is challenged. Therefore, in its study, it is no longer possible to use the 
relevant equations governing the fluid with the assumption of continuity, 
such as Navier-Stokes. Instead, appropriate simulation methods such as 
the Boltzmann lattice method, molecular dynamics, and kinetic Monte 
Carlo method should be used to understand fluid transfer. All of these 
methods require appropriate computational capabilities [163,164].

Heat transfer at the micro/nanoscale

Heat transfer at the nanoscale is different from macro and micro 
scales. In structures with characteristic lengths comparable to the 
mean free path and wavelengths of heat carriers (electrons, photons, 
and molecules), classical laws are no longer valid, and new methods are 
used to predict heat transfer at the nanoscale. Although much work has 
been done recently in this area, there is still a need to better understand 
the thermal phenomena in nanostructures. In addition, the knowledge 
of better control and operation of heat carriers in small structures can 
open up new avenues for discovering creative applications.

Increasing the surface-to-volume ratio, which is a general feature of 
micro/ nanosystems, leads to the increase of convective and radiative 
heat transfer rates. For example, the flow inside microchannels has high 
heat transfer coefficients [155,165,166]. This is explained by the fact 
that in the region where the flow is fully expanded, the Nusselt number 
is constant and is defined as Eq. 2.

                    (2)

Where ,  and  are the convective heat transfer coefficient, 
hydraulic diameter, and thermal conductivity of the fluid, respectively. 
The heat transfer coefficient is inversely proportional to the hydraulic 
diameter and increases with decreasing hydraulic diameter.

Tuckerman and Pease were the first to propose the use of 
microchannels to cool electronic components [167]. Qu and Mudawar 
numerically studied the flow and heat transfer inside rectangular 
microchannels and gave a detailed description of the characteristics of 
mean and local heat transfer, temperature, Nusselt number and heat flux 
[168]. Li, et al. performed accurate simulations of heat transfer in silicon 
microchannels and investigated the effect of microchannel geometric 
parameters and physical properties of the fluid on the flow and heat 
transfer by simplifying the 3D heat transfer model [169]. Peterson and 
Liu developed a three-dimensional model of flow and heat transfer 
within parallel microchannels [170]. Liu, et al. Also investigated the effect 
of viscosity on heat transfer within microchannels. They investigated the 
effect of viscosity and thermal conductivity on flow characteristics and 
heat transfer [171].

There are issues in the transfer of heat by fluids on a small scale. 
For example, if the hydrodynamic diameter of the system is less than 
10 micrometers, the macro-scale results should be used with caution. 

Also, when the hydrodynamic diameter reaches 100 nm, the interactions 
and molecular interactions between the fluid and the solid wall must be 
considered [160].

Considering the electrokinetic effects, the energy equation also 
changes (the bolded term is added to the equation). The energy 
equation can be expressed for the flow of isotropic, Newtonian, and 
incompressible fluid in the presence of an external electric field as 
follows [172]:

                  (3)

where , ,  and  are temperature, electric field, heat capacity and 
time, respectively.

Mass transfer at the micro/nanoscale

The mass transfer equation considering the electrokinetics effect for 
an electrolyte solution is expressed as the Nernst Planck equation (Eq. 4).

                 (5)

Where , , , ,  and  are the diffusion coefficient, number 
density, electric charge, mass flux of ion i, Boltzmann constant and 
electron charge, respectively.

In a study by Fadaei et al., they studied the mass transfer of ionic 
species from nanopores [173]. Zhao, et al. experimentally investigated 
the effect of different parameters on the mass transfer rate in a T-shaped 
microchannel. Mass transfer coefficients were calculated and the effect 
of different parameters was studied. Studies have shown that a decrease 
in channel height or a decrease in channel length at a constant Reynolds 
number, or a decrease in volumetric flux will lead to an increase in the 
overall average mass transfer coefficient [174].

The necessity for change in the chemical engineering 
curriculum

Due to the growing need of industry and society for systems with 
micro/nano dimensions and their various applications in everyday 
life, the need for training of experienced professionals to design and 
develop these systems is more felt. In the last few decades, due to rapid 
developments in microelectronics and biotechnology, applied research 
in the field of micro-coolers, micro-biochips, micro-reactors, and 
micro-fuel cells, all of which are microfluidic systems, is expanding 
at an extraordinary rate. On the other hand, chemical engineering 
textbooks taught in universities are only able to meet the needs of 
large-scale processes, and the knowledge gained from them does not 
help much to know the mechanisms, behavior, and performance of 
small-scale processes. It should be noted that the basic equations of 
traditional physics and chemistry do not simulate the evolution of small 
scales (especially nanoscale) well.

The main sources for chemical engineering courses in many 
countries are still the heat transfer textbooks by Holman [175] and 
by Incropera, et al. [176], thermodynamics by Van Wylen [177] and 
by Smith, et al. [178], fluid mechanics by Streeter, et al. [179] and by 
Munson, et al. [180], mass transfer by Treybal [181], unit operations by 
McCabe, et al. [182], reactor design by Levenspiel [183] and Fogler, et 
al. [184]. Most of these books were written in the relatively distant past 
and can only meet the needs of large-scale processes and large-scale 
equipment design (Table 6). In the past two decades, due to significant 
advances in micro/ nanotechnology, the need to develop courses 
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Book Author, Year Ref

Introduction to Heat Transfer
Frank P. Incropera, David P. DeWitt, Theodore L. 
Bergman, Adrienne S. Lavine; 1985 [176]

Mass Transfer Operations RE Treybal; 1955 [181]

Fluid Mechanics Victor L. Streeter, K.W. Bedford, E. Benjamin 
Wylie; 1983 [179]

Transport Phenomena
R. B. Bird, W. E. Stewart, E.
N. Lightfoot, Robert E. 
Meredith; 1961

[185]

Unit operation of chemical engineering WL McCabe, JC Smith, P Harriot; 1986 [182]

Introduction to chemical engineering thermodynamics JM. Smith, HC. Van Ness, MM Abbott; 1950 [178]

Chemical reaction engineering O. Levenspiel; 1962 [183]

Table 6. Some common books used in the field of chemical engineering

http://dspace.bhos.edu.az/jspui/handle/123456789/1320
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Book Author, Year

Chemical micro process engineering: fundamentals, modelling and reactions V Hessel, H Löwe, S Hardt; 2004

Nanotechnology and Microfluidics X Jiang, C Bai, M Liu; 2019

Nanoscale and microscale phenomena: Fundamentals and applications YM Joshi, S Khandekar; 2015

Macro-to microscale heat transfer: the lagging behavior DY Tzou; 2014

Nanotechnology for Chemical Engineers SS Elnashaie, F Danafar, HH Rafsanjani; 2015

Microfluidics and nanofluidics handbook: fabrication, implementation, and 
applications SK Mitra, S Chakraborty; 2016

Intensification of Heat and Mass Transfer on Macro-, Micro-, and Nanoscales BV Dzyubenko, YA Kuzma- Kichta, AI Leontiev, II 
Fedik, LP Kholpanov; 2008

Table 7. Some useful books for micro and nano-scale chemical engineering
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focusing on micro/ nanoscale transport phenomena is felt more. In 
fact, the use of design principles is essential for the development of 
micro-scale (micro/nano) systems and methods for the production and 
commercialization of nanotechnology-based products.

Transport phenomena, i.e., fluid mechanics, heat transfer, and 
mass transfer are fundamental topics in disciplines such as chemical 
engineering. The existing textbooks on these subjects, which are often 
taught at the undergraduate or graduate level, focus more on the 
behavior of large-scale systems, and so far limited textbooks for studying 
the micro and nano fields required to design and build microelectronic, 
microfluidic, and micro-reactors have been compiled [7].

Among the important topics on the microscale are topics related to 
electrostatic principles (origin of electrostatic forces, surface charge and 
repulsive forces, density of opposing ions at the surface, electrostatic 
forces in the presence of electrolytes, the concept of electric double 
layer, and Debye length), surface and electrokinetic phenomena, etc. 
must be included in the chemical engineering curriculum. For instance, 
the book Electrokinetics and colloid transport phenomena, written 
by Masliyah, as one of the pioneers of microtechnology in chemical 
engineering, can be a good reference for this purpose [185,186]. 
Therefore, it is suggested that courses in micro/nanofluid flow as well 
as in micro-scale heat transfer be added to the undergraduate courses 
in chemical engineering. Table 7 presents some useful books that fit 
the needs of the day, just for example, for use in chemical engineering.

On the other hand, interdisciplinary courses and the integration 
of interdisciplinary knowledge required to design and build micro/
nanodevices can also help educate people in the basic areas of micro/
nanoscience. For example, an interdisciplinary course from three 
engineering groups (chemical, mechanical, and plastics engineering) 
can cover the principles of micro / nano-scale transport phenomena 
required for the production of nano-devices (Figure 13) [7].

Conclusion and outlook
Modern chemical engineering encompasses a scope beyond 

conventional process engineering. In recent decades, the miniaturization 
of processes into micro/ nano-scale has emerged as a new approach for 
all engineering disciplines, and chemical engineering has been a good 
ground for the growth of this technology. Systems miniaturization is 
growing rapidly, and new ideas have emerged in recent decades. Today, in 
addition to dealing with the world of micro-scale, chemical engineering 
has moved beyond its traditional lacquer and found close connections 
with biology, medical engineering, and most engineering disciplines. To 
meet new and emerging needs in chemical engineering, the curriculum in 
this engineering major need to be quickly revised to include phenomena 
related to micro-and nano-scales. One of the most important parts of 
the curriculum that needs to be fundamentally revised is the courses on 
transfer phenomena and in particular the topic of heat transfer, which 
may require fundamental changes in theory and governing equations 
to predict system behavior. Research topics in the field of chemical 
engineering will inevitably focus on nanomaterial synthesis, molecular 
engineering, downsizing, intensification, and process integration over the 
coming decades.
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