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Abstract

In recent decades, the miniaturization of processes towards micro/ nanoscale has emerged as a new and general approach for all engineering disciplines, and for various
reasons, chemical engineering has been a good ground for the growth of this technology. The miniaturization of tools and technologies at the micro and nano scales has
led to a revolution in chemical engineering, as exemplified by the advent of microchips in the computing and computer industries. These activities, which took place
mainly during the past two decades, owe much to human achievements in the ability to fabricate microscale equipment, as well as the invention of laboratory devices
to identify and monitor microstructures at the nanometer scale. To meet the diverse and emerging needs of the chemical industry, modern chemical engineering is
essential to meet the needs of the market in terms of producing products with micro-scale characteristics, as well as overcoming the operational and environmental
constraints of traditional macro-scale industrial processes. In this review article, many recent developments in the profession of chemical engineering are discussed
from the perspective of downsizing equipment and their applications, and the need for a thorough revision in the educational contents of this engineering discipline

in line with the growth of micro/nanotechnology has been pointed out.

Introduction

Chemical engineering is the technique of applying basic sciences
(mathematics, physics, chemistry and biology) to implement physical
and chemical processes in industrial plants. This discipline is a branch
of engineering sciences that deals with the design, manufacture,
and operation of processes in the chemical industries [1]. Chemical
industries are those industries in which chemical, physical, or biological
reactions convert raw materials into industrially valuable products. The
main area of activity of a chemical engineer is supervising the three
sections of mixing, reaction engineering, and separation. Accordingly,
many industries such as refineries, petrochemicals, wood and paper,
food, pharmaceuticals and medical equipment, cellulose, polymer,
inorganic chemical, and many other industries directly benefit from the
applications of chemical engineering. This part of chemical engineering,
which is related to large-scale chemical industrial processes, is called
process engineering. The separation processes used by a chemical
engineer (such as distillation, extraction, etc.) are called unit operations
and include mass, heat, and momentum transfer. These processes usually
combine to complete the chain of chemical synthesis or separation of
materials. The three basic physical laws in chemical engineering are the
principles of mass, energy, and momentum conservations. Material and
energy transfer in a process is evaluated using mass and energy balance
for the whole unit, unit operation or part of it. Chemical engineers
apply the principles of thermodynamics, reaction kinetics, and transfer
phenomena to perform an industrial process [2-4].

In recent years, as a result of the increasing synergistic advancement
of science and technology, new aspects of science and technology have
emerged every day that has not been discussed until recent decades.
Recent advances in nanoscience and nanotechnology have made it
possible to produce very tiny tools and equipment that enable humans
to control the movement of very small volumes of fluids or particles
suspended in them. With this equipment, many difficult, complex,
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and parallel processes can be performed in a short time, at low cost,
and more easily. With this equipment, many difficult, complex, and
parallel processes can be performed more easily in a short time, and
at a low cost. By manipulating materials and equipment at the micro
and nano scales, researchers have been able to produce new materials
with advanced and intensive properties. The miniaturization of tools
and technologies at the micro and nano scales has led to a revolution
in chemical engineering, as exemplified by the advent of microchips
in the computing and computer industries [5]. Chemical microsystems
have special potential. To meet the diverse and emerging needs of
the chemical industry, modern chemical engineering is necessary to
meet the needs of the market as well as the production of products
with micro-scale characteristics in order to overcome the process and
environmental constraints of traditional large-scale processes. To this
end, it is important to understand the relations and differences among
small-scale phenomena to the characteristics and behavior of large-
scale processes [6].

Traditional areas of expertise in chemical engineering, including
transfer phenomena, process design and analysis, and commercialization
skills, have evolved, and new areas of expertise in this engineering
major at molecular and micro/nanometer scales, especially in biological
systems, in It is increasing [7]. In this regard, many industrial process
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equipment related to the chemical industry, called unit operation
equipment, previously used in traditional chemical engineering on
macro and meso scales, are downsizing, an activity that began decades
ago by pioneers miniaturizing the equipment [8]. These include mixers,
reactors, pumps, tubes, and valves, now referred to as micromixers,
micro-reactors, micropumps, micro/nanotubes, micro-valves, and
more [6]. Table 1 shows a number of unit operation equipment in both
macro and micro/nano scales.

Micro/nanoscale systems were initially thought to be merely
scaled-down examples of large-scale systems. Advances in micro-and
nanotechnology have proven that the problem is far more complex than
downsizing the geometry of the device, and a better understanding of
the properties is needed. For example, in micro-and nanoscale systems,
where the dimensions of the system are very tiny, the surface-to-
volume ratio is very high, and therefore capillary and electrokinetic
effects, which may be negligible in large-scale processes, become very
important. In fact, effective forces and mechanisms change with scale,
and this unique feature has led scientists to use such systems to control
fluid flow. For example, for a cube, if one dimension is reduced 10 times,
its volume is reduced 1000 times. Therefore, the force of gravity, which
is proportional to mass, is also reduced 1000 times. At the same time,
the frictional force caused by contact with the surrounding objects
is reduced by only a factor of 100 because this force depends on the
surface. As objects get smaller, surface forces such as friction become
much more important than gravity. For further explanation, scaling
analysis for fluid forces, electromagnetic forces, electrostatic forces, and
surface tension is shown in Figure 1 [9].

This review article examines the relationship and differences
between phenomena at the macro and micro/nanoscales and discusses
many recent developments in chemical engineering regarding
equipment downsizing and their applications. Other cases mentioned
in this article are the shortcomings of traditional chemical engineering
textbooks that have been compared with the new texts required by this
engineering discipline.

Motivations towards equipment downsizing

There are many specific motivations that justify human
determination to use micro/ nanosystems. One of the major advantages
of micro-systems is that they have a high surface-to-volume ratio.
However, in addition to the high surface-to-volume ratio, the high
rate of heat and mass transfer in these systems has led scientists to
use micro and nanoscale equipment to perform separation, reaction,
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Figure 1. Scaling of fluid forces, electromagnetic forces, electrostatic forces and surface tension
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and tracking processes. Other incentives for equipment downsizing
include process intensification; Optimization and integrated control
of strategies; Ability to integrate multiple features into one device;
Leading processes towards cleaner and cheaper technologies (reducing
the cost of purchasing materials for smaller equipment), lower energy
consumption, higher safety and less waste of raw materials.

For example, downsizing chemical reactors has a positive effect on
chemical processes. In fact, as the surface-to-volume ratio increases, so
does the rates of mass and heat transfer, which prevents hot spots from
forming in micro/nano-reactors, where intense exothermic reactions
occur. Also in such systems, the possibility of creating dead or blind
spaces is very weak. These reactors are used in situations where there
is a need to produce small quantities of specific products. Therefore, in
situations where it is necessary to react at very high temperatures or
pressures, or in situations where the reaction environment is toxic and
hazardous, the use of micro-reactors is much safer than conventional
reactors [10]. It is very easy to control the flow and concentration of
fluids in micro-reactors; therefore, using these types of equipment, it is
possible to produce products with predetermined characteristics with
high efficiency. For this reason, the use of micro-reactors in the synthesis
of nanostructured materials, whose size, size distribution, geometry, and
structure are very important, has been widely welcomed [11].

Factors facilitating the entry of engineering disciplines
into the field of micro and nano

Recent advances in micro/ nanotechnology owe much to new
human capabilities in measuring and controlling individual structures
at the micro/nanoscale. The increasing development of new tools for
the characterization of materials and their manufacturing technology
has played a very important and fundamental role in human progress
towards micro/ nanotechnology. These tools enable the eyes to see
and the fingers to control the nanostructures. In fact, micro/nanoscale
process management owes much to technological advances in the
following two areas:

1. Manufacture of laboratory instruments with the ability to
measure, analyze, and observe at the micro/ nanoscale

In various engineering and medical sciences, the subject of
measurement and characterization is of key importance. So that
the physical and chemical properties of materials depend on the
raw materials used as well as the microstructure obtained from the
manufacturing process. For example, to identify raw materials, it is
obvious that the type and amount of impurities, geometry and particle
size distribution, crystal structure, and the like affect the nature and
quality of the product. Therefore, the more powerful measuring and
characterizing devices are available, the more accurate control of raw
materials would take place. In addition, to study microstructures,
microscale identification and analysis tools are needed. In
microstructure technology, the microscopic structure of materials,
the type of phases, their geometry, size, quantity, and distribution are
studied in detail. Until the beginning of the new century, devices could
not analyze particles on a scale smaller than micro, but now with the
advancement of science, devices with the ability to measure particle size
with high accuracy at the nanometer scale and even smaller have been
made [12]. Table 2 provides a number of different techniques used to
characterize micro/nanoparticles.

2. Manufacture of micro-scale process equipment (such as
microfluidic devices)

The second factor that led to the entry of engineers into the world
of nanotechnology was the acquisition of tools for the production of
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Table 1. A number of equipment and devices for unit operation in macro and micro scales

Equipment Macro scale Micro scale

Turbine
(a rotary mechanical device that extracts energy from
a fluid flow and converts it into useful work)

Reactor
(a device for containing and controlling a chemical
reaction)

Mixer
(a device for mixing the materials)

Pipe

(a tubular section or hollow cylinder, usually but not
necessarily of circular cross-section, used mainly to
convey substances which can flow)

Pump
(a device that moves fluids (liquids or gases), or
sometimes slurries, by mechanical action)

Valve

(a device or natural object that regulates, directs or

controls the flow of a fluid (gases, liquids, fluidized
solids, or slurries) by opening, closing, or partially

obstructing various passageways)

Table 2. Some of the micro/nanoparticle characterization techniques

Measurement technique Characterization Sensitivity Reference

Measurable properties: Geometric morphology, adhesion
. . distribution, friction, surface impurities, material of different surface

Atomic Force Microscopy (AFM) points, elasticity, magnetism, chemical bonds, surface electric charge 8umto I nm [13]
distribution, and electrical polarization

Nuclear Magnetic Resonance (NMR) I‘dentlﬁcatlon of che‘mlcal molecules, atgmlc ‘composmon, Effect of Up to 1 nm [14]
ligands on nanoparticle shape, nanoparticle size

Transmission Electron Microscopy TEM) Determining the size and shape of particles Up to 1 nm [15]

X-ray Photoelectron Spectroscopy (XPS) Identify elfzments on the ;grface, identify the experimental formula > 100 nm [16]
for analyzing the composition of samples

Fourier Transformed Infrared Spectroscopy (FTIR) Determining the structure and measuring chemical species - [17]

Dynamic Light Scattering (DLS) Determining the distribution of particles in solutions and suspensions |-- [18]

Brunauer-Emmett-Teller (BET) Surface area, and characterization of nanopores 1 to 300 nm [19]
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small-scale parts and machines. Today, micro/ nanoscale channels and
equipment can be fabricated using a variety of methods, and various
techniques for making microfluidic devices are available to engineers.
For example, photolithography, soft lithography, thermoforming
techniques, etching, engraving, and laser photoablation may be used
[13-20]. Qamar and Shamsi recently conducted a review of microfluidic
equipment fabrication on flexible substrates such as paper and plastic [21].

Photolithography is the process of applying light to transfer
geometric patterns, usually from a transparent mask, to a substrate
through a layer of light-sensitive emulsion called a protective coating.
Photolithography is essentially the generalized form of photography
technology. First, something like a negative photographic film is made
of the overall layout of the design. This negative, called a mask here, is
used to replicate the design on a substrate. In photolithography, after
placing a layer of light-sensitive polymer on the substrate surface, a
homogeneous light beam passes through a mask and creates a pattern
on the polymer. In the photolithographic process, after creating the
design on the interface polymer, the lighted areas, with their resistance
to corrosion, mediate the transfer of the design to the substrate; This
process is very similar to the UV sealing technique [22].

Softlithography is a set of techniques that uses a soft elastic material,
usually polydimethylsiloxane (PDMS), to transfer designs to the
substrate material. The main process involves the construction of elastic
microchannels. These microchannels are designed in a special program
and then printed on a transparent mask with high resolution or molded
on a conventional chrome mask to be used as a mold or seal for the soft
material. Polymer seals can also be used to make nanostructures [23].

Laser cutting is another technology that uses laser beams to cut
objects. Laser cutting is done by using a laser beam from a strong laser
output on objects that want to be cut. A small part of the object to be
cut is melted, burned, or sublimated and removed from the body by the
pressure of the gas, and finally, the cut surface is created with excellent
quality [23,24]. Figure 2 shows an example of a microfluidic device
made by laser engraving [25].

Chemical engineering activities and services in the field
of micro/nanotechnology

Miniaturized devices are used in many fields such as chemical
processes, propulsion and power generation, electronics cooling, the
aerospace industry, inkjet printers, and biomedical industries and
chemical engineering plays a key role in many of these fields [26-30]. In

1¢cm

Figure 2. View of a microfluidic device with a T-shaped channel made by laser cutting
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the following, some applications of chemical engineering in the field of
process miniaturization have been studied.

Microextraction

Liquid-liquid extraction or solvent extraction is a separation
method in a two-phase system in which the extraction of the substance
is based on its inclination to one of these two phases. The system usually
consists of an aqueous phase and an organic phase. Due to the flexibility
and scalability of the solvent extraction process, this process is being
used in various applications in industry such as the extraction of metal
ions and organic materials [31]. Conventional liquid-liquid extraction
processes are usually performed in large columns or tanks with a
capacity of hundreds of liters, and the phase contact and mass transfer
rate are controlled using packings, flow distributors, or special agitators.
Following the contact of the phases, the phase separation takes place by
gravity and the phase free of the extracted substance is discarded. In
these systems, intense mixing is required to shorten the time period
that chemicals must travel to reach the aqueous-organic interface,
and maximize the contact surface [32,33]. The need to mix phases for
effective extraction requires the use of large volumes of aqueous and
organic phases that prevent the use of solvent extraction devices for low
volume materials, such as expensive chemicals or biochemicals, trace
chemicals, and extraction of molecules at low concentrations.

To avoid these limitations and to use solvent extraction on a
much smaller scale, various substrates have been developed, such as
microchannels that use very small volumes of fluid. In fact, micro-and
nano-scale extraction systems can be used in such situations. The tiny
size of these systems has minimized the diffusion path, so that two-
phase mixing is no longer necessary. Also, the ratio of the contact
surface of fluids to their volume is very large; Therefore, the mass
transfer takes place at a high rate. It should be noted that using such
systems, the extraction process can be performed continuously [10, 34-
36]. Figure 3 shows a micro-extraction system in which the interface
between two parallel aqueous-organic streams forms the mass transfer
surface [37,38].

Solvent extraction microfluidic equipment has been developed for
a wide range of applications, including metal ion separation and DNA
purification [39-47]. Sarkar, et al. investigated liquid-liquid biphasic
flow patterns in microchannels [48]. Dai, et al. performed micro-solvent
extraction of copper ions from water using a microchannel device.
They used kerosene as a solvent [45]. Jahromi, et al. performed micro-
extraction of calcium ion using a type of crown ether as a solvent in
a Y-shaped microchannel and investigated the hydrodynamics of two-
phase flow in the microchannel. Micro-extraction technology showed
significant potential in reducing the reaction time and increasing the
efficiency of calcium ion extraction compared to traditional extraction
devices. So that in 9.5 seconds the extraction reached an efficiency of
18.5% [49] Priest et al. performed parallel flow micro-solvent extraction
using a type Ilamine as the solvent, as well as the excretion of the solution
obtained from the refined feed containing high amounts of Pt chloride
in a Y-shaped microchannel. Also, the simultaneous effect of scale-
up was investigated by increasing the number of microfluidic devices
and various operational parameters on the rate of platinum extraction
and recovery [50]. Abbasi, et al. in a study extracted and removed
color pollutants from industrial effluents [37]. In another study, they
studied the removal of drug contaminants from effluents [51]. Recently,
research has been conducted on the extraction of chromium from the
aqueous phase by rotating microchannels. As mentioned, these systems
can also be used to separate DNA. Samla, et al. studied DNA extraction
from a biological sample (blood) in a microfluidic medium. The latter
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(A) (B)
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Figure 3. (A) Microfluidic system for microextraction, (B) Schematic of solute extraction mechanism

activity can be very useful because of its vital role in clinical diagnosis
and genetic analysis [52].

Liquid A
Micromixing

The mixing process is used to mix a volume of fluid in a chemical
reaction, heat transfer, mass transfer, or multi-phase combination in the
industry. The mixing mechanism is done in two ways, micro and macro.
In micro mechanism, molecular scale is involved [53,54]. Laboratory
micromixers and shakers are tools used to homogenize mixtures. These r \

[

Flow-through channel
(interdiffusion region)

, I
t

devices are an important part of laboratory equipment in the food,
beverage, cosmetics, electronics, as well as laboratories related to life
sciences, water and wastewater, and biotechnology [55]. Shakers mix
materials by shaking. Shaker plate moves back and forth or rotates.
The micromixer performs the operation of mixing fluid masses in two
scales. There are several things that distinguish between shaker and
micromixer. Micromixers are one of the most important components
of a microfluidic device and are classified according to laboratory
applications. On a large scale, fluids are mixed by convection, like
c . . . . . Liquid B

mixing milk and coffee by stirring. In microsystems, fluids do not mix

by convection, but when two fluid streams meet in a microchannel, Figure 4. Schematic of the T-shaped microfluidic mixer
they flow in parallel without creating a turbulent flow, and mixing is
done by the penetration of molecules at the contact surface between the
two fluids [56,57]. Figure 4 shows a microfluidic mixer [58].

| Micromixer |

Micromixers are divided into active and inactive categories. Passive
type, without an external driving force and work only through channel
geometry (like T and Y micromixers). On the other hand, in active
micro-mixers, mixing is provided by an external driving force (such | passive | | active |

as mixing caused by micro blades). Figure 5 shows the classification of
micromixers [59]. ‘t: & 2"/' j :’: HS:_:

Nahr, et al. investigated the effect of the geometry of a microchannel ] oll © Q
on fluid flow and mixing. In this study, flow characteristics and mixing = SllEll o g
efficiency in three different microchannel geometries were investigated. 2 stz Llls
The results showed that the mixing behavior is strongly dependent on sllelld|l - s(3l e 2 '5 oll=w
the channel geometry [60]. In a study using flow imaging and ethanol- w23 % Bl ellal =5 21 E
soluble red and green inks, Koch, et al. tested horizontal micromixers 8 S o E =4 E E = Q B
[61]. In a theoretical study, Liu et al. numerically investigated the E = = o 5 'E E § oll< ||+
mixing of two fluids (water and glycerin water solution) in three- - o 21 5 % wllz
dimensional spiral and checkered micromixers at Reynolds numbers 1 O ;ij % E
and 10 and showed that the mixing performance was inversely related =
to glycerol content [62]. In another study, using phenolphthalein and o~ — I —
sodium hydroxide solutions, Liu et al. experimentally tested the mixing .

: : , , parallel  serial

performance of three-dimensional microchannels in two Reynolds
numbers 6 and 70 and showed that increasing the Reynolds number Figure 5. Schematic of the classification of micromixers
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increases the mixability in the microchannel [63]. Shamsoddini, et al.
simulated a micromixer equipped with a blade using the hydrodynamic
method of incompressible particles and evaluated the performance of
the micromixer in terms of mixing efficiency and type of blade state.
They showed that the performance of the cross blade was better than
that of the straight blade [64]. Nguyen and Wu conducted a review study
on micromixers, their types, and applications [59]. Another study by
Cai, et al. Examines recent advances in passive and active micromixers
for the production of various microfluidic chips [65].

Synthesis of micro and nanoparticles

Due to the wide applications of nanoparticles in various fields, the
synthesis of these materials is very important. Synthesis of micro and
nano particles is done using micro and nano reactor equipment. At
the macroscopic scale, the chemical reactor is a chamber that makes
it possible to perform a reaction in a certain volume [66]. One of the
advantages of using a reactor is the possibility of precise control of
reaction conditions such as solvent, temperature, and stirring speed. At
the micro and nano scales, chambers can also be created that separate
a certain volume of the reaction mixture from the bulk medium. If a
chemical reaction is trapped inside such a chamber, then the chamber
is considered a micro or nano-reactor. The advantages of using these
reactors include more control over the reaction, selectivity, separation
of toxic and unstable substances from the mass environment, and
consequently reduction of system toxicity [67]. Microreactors generally
consist of a network of micro-sized channels deposited on a solid
substrate. Microreactors are made of materials such as ceramics, glass,
polymeric materials, stainless steel, silicon, etc [68-70]. In a general
classification, nanoreactors are classified into two groups: natural
nanoreactors and synthetic nanoreactors. Natural nanoreactors include
bacterial protein microparticles, protein cages, and viruses. Synthetic
nanoreactors are more diverse and include molecules, macromolecules,
nanostructures, and porous solids. The application of micro / nano-
reactors has made significant progress in the last two decades [71].

The high surface-to-volume ratio of micro / nano-reactors results in
more efficient chemical reactions (higher mass transfer and higher heat
transfer). Also, this high surface-to-volume ratio causes the reactants to
communicate more, and as a result, the chemical reaction takes place
much faster. Therefore, the residence time in these reactors is less than
conventional systems [72]. Researchers believe that by using micro-
reactors, about 30% of chemical and pharmaceutical products can be
produced more efficiently. Due to the small size of the micro-reactors,
the reaction is faster, and the reaction is easier to control. Therefore,
the use of micro-reactors greatly reduces production costs. Reactions in
these small spaces can be very carefully controlled, a feature of micro-
reactors that allows reactions to be performed in a safe, clean, and, of
course, highly efficient environment [73]. The technologies of micro-
reactor and micro-process are mainly used in laboratories to synthesize
organic matter, and small-scale research has been conducted, both in
academia and in industry.

Wagner and colleagues were the first to synthesize gold
nanoparticles using a micro-reactor. In this study, ascorbic acid was
used as a reducing agent and polyvinylpyrrolidone as a stabilizer (to
prevent the accumulation of nanoparticles). The size of nanoparticles
produced in this study was reported in the range of 15-24 nm [74].
Singh, et al. succeeded in chemically synthesized gold and silver
nanoparticles in a micro-reactor. The advantages of this micro-reactor
were continuous flow, low solvent content, faster reaction, less loss, and
better reaction control [75]. Lin and colleagues were able to synthesize
silver nanoparticles using a continuous flow tubular micro-reactor
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[76]. Krishnadasan, et al. synthesized cadmium selenide nanoparticles
using 170 um wide, 80 m deep, and 40 cm long a glass micro-reactor
[77]. A typical glass micro-reactor is shown in Figure 6 [69]. Song et al
synthesized cobalt nanoparticles using a polymeric micro-reactor [78].
Wang, et al. synthesized 10 nm titania nanoparticles using ceramic /
glass microreactors [79]. Appalakutti, et al. synthesized copper chromite
nanoparticles with a size in the range of 192-300 nm in a continuous
flow micro-reactor. In this study, copper nitrate and chromium nitrate
were used as precursors [80]. In a recent study, the extensive synthesis
of inorganic nanoparticles (Au, Ag, Se, and mixed oxides of Cu, Co, Ni,
Ge, and Ta) in parallel nanoreactors was investigated by Jibril, et al. [81].

Energy production

One of the methods of energy production on the micro and
nanoscale is the use of micro-fuel cells. Micro-fuel cells are devices
that use electrochemical reactions to generate electrical energy [82,83].
Using a silicon chip, Pattekar et al designed a micro-reactor for the
methanol regeneration reaction to produce hydrogen. This hydrogen
is used in micro-fuel cells. The efficiency of this cell was 85-90% and its
power generation was 8-10 watts. They mounted equipment such as a
temperature and pressure sensor, and a filter catalyst on a microreactor
chip to try to apply conventional equipment in non-microreactors to
the microreactor. The result was proper control and monitoring of the
reaction. Figure 7 is a picture of a microreactor made by this group
[84]. A recent review study of microfluidic fuel cells with different types
of fuel was conducted by Wang, et al. In this study, paper-based, non-
pumped microfluidic cells are introduced, as well as the prospects for
the development and future applications of micro-fuel cells [85].

Another method of energy production is the use of electrostatic
properties in micro-and nanochannels. When the inner walls of
the nano-channel have an electric charge, they exhibit ion-selective
behavior. In other words, due to the electric charge of the wall, ions in
the electrolyte possessing an opposite charge to the wall are absorbed
by the wall, and ions of similar charge are expelled from it. This
phenomenon indicates the presence of an electrostatic effect in ionic
channels. Similarly, an electrical double layer is formed near the surface
of the channel. In addition, while the electrolyte solution is flowing
from the high-concentration electrolyte tank to the low-concentration
tank in the nanochannel, a diffusive flow occurs in the flow direction.
This phenomenon is reverse electrodialysis [86].

Figure 6. A typical glass micro-reactor
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Figure 7. Micro-reactor image made by Pattekar et al.
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Figure 8. Schematic of the energy generation process in soft nanopores

Kang et al claimed that by using alumina nanopores in the potassium
chloride concentration gradient, a significant power density (the
amount of power per unit volume) could be obtained [87]. In addition
to theoretical studies, the application of reverse electrodialysis was also
experimentally investigated. Kim, et al. Showed that power density can
be obtained from a silica nanopore [88]. Guo, et al. performed reverse
electrodialysis experimentally on single-ion-selective nanopores
and obtained maximum power output. One of the remarkable
mechanisms of electrodialysis is the overlap of electrical double layers
[89]. Hsu, et al. studied the rectification of ionic current in a conical
nanopore. They noticed the effect of electroosmotic flow on current
rectification [90]. In another study, they looked at the production of
electricity by reverse electrodialysis through a conical nanopore [91].
Yeh et al. Investigated the power generated by the cone geometry of a
negatively charged channel for different types of electrolytes [92]. In
a study by Khatibi, et al. they modeled the electrokinetic process and
the generation of electricity from a cone-shaped nanochannel coated
with a polyelectrolyte layer using the Poisson-Nernst-Planck equation
for ion transport and electrical potential, as well as the Navier-Stokes
equation for electroosmotic flow. Figure 8 shows a schematic of the
energy generation process by conical nanochannels. As can be seen,
ionic species are transferred from the high concentration tank across
the channel to the low concentration tank [86].
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Pumping and creation of fluid flow

Micropumps are used to move fluids on a micro and nanoscale.
Micropumps have been developed for many different applications,
including fluid flow, drug delivery and biomedical experiments, cell
culture, and more [93]. Figure 9 shows an example of the application of
fluid flow in a microfluidic system for drug delivery. In this device, the
drug is embedded in tanks with micro dimensions [94].

The first generation of micropumps was first reported in 1975
and was soon developed by Smith and Van Lintel in the early 1980s,
making them the first real MEMS micropumps. This sparked interest
in reducing the size of the pump to new operational dimensions [95-
97]. Micropumps can be divided into mechanical and non-mechanical
categories. Mechanical systems include moving parts [98]. Recently,
attempts have been made to design non-mechanical micropumps that,
due to their independence from an external driving force, can be used
in areas where external driving force cannot be used. One of these types
of pumps is capillary pumps that play an important role in microfluidics
because they do not require external driving force. Glass capillaries and
porous media, including nitrocellulose paper, can be integrated into
microfluidic chips. Capillary pumping is widely used in lateral flow
testing [99-101]. Recently, new capillary pumps have been developed
with a constant pumping flow rate independent of liquid viscosity
and surface energy [102]. Another non-mechanical micropump is the
electroosmotic micropump. An electroosmotic pump (EOP) is used to
generate fluid flow or pressure using an electric field [103]. Figure 10
shows the differences in velocity profiles generated by electroosmotic
and pressure-driven flows [104].

Figure 9. Wrist microfluidic system for drug delivery

hydrodynamic flow profile

electroosmotic flow profile

anode (4)
cathode (-)

Figure 10. Velocity profiles generated by pressure-driven flow (parabolic) and
electroosmotic flow (almost plug)
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Electroosmosis has been used in various fields such as high-
performance liquid chromatography (HPLC) [105,106], cooling
of microelectronic equipment [107], drug delivery [108-110], etc.
In a review study, Wang, et al. studied electroosmotic pumps and
their applications in microfluidic systems [111]. In another study,
Chakraborty and Ray investigated the flow rate control by applying
pulsed electric fields to circular microchannels using some of the
intrinsic properties of the electroosmosis phenomenon [112]. Sadeghi,
et al. studied the effect of combining both electroosmotic and pressure-
driven flows in a flat microchannel parametrically [113]. Another
method of creating fluid flow is to use the diffusioosmotic phenomenon
in micro and nanochannels. Diffusioosmotic flow is an electrokinetic
phenomenon that uses a concentration gradient to stimulate flow
instead of conventional driving forces. Hoshyargar, et al. studied the
diffusioosmotic current in the microchannel. Their results showed that
in certain conditions, the velocity profile in this type of flow can be
flatter than that of the electroosmotic stream [114,115].

Separation and detection of particles and molecules

One of the best and most feasible methods for separating
molecules and analyzing a wide range of ionized analytes is the use of
electrophoresis [116]. Electrophoresis is one of the major electrokinetic
phenomena discovered by Reuss in 1807 [117,118]. He observed that
clay particles were dispersed in water by an electric field [118]. The
term electrophoresis refers to the movement of charged compounds
or particles in a solution (liquid medium) under the influence of an
electric current. Molecules move at different speeds depending on the
type of molecule, the size, as well as the different electrical charges.
Electrically charged chemical compounds depending on their type of
electric charge move towards the pole of the anode or cathode. The
electrophoresis separation technique is much more convenient and less
expensive than other methods and has undeniable advantages. Analytes
that are of particular interest are peptides, amino acids, nucleic acids
and oligonucleotides, DNA, nucleotides, organic acids, and small
anions and cations in body fluids and tissues [119-124].

One type of electrophoresis that is the oldest type of this technique
is called surface electrophoresis. In this method, a porous thermoplastic
paper layer consisting of cellulose, acetic acid, and polymer gel is used
[125,126].

Another type of electrophoresis is capillary electrophoresis (CE).
In 1960, Hjerten described the first capillary electrophoresis device.
He used this device to prove various theoretical concepts in capillary
electrophoresis and was able to separate mineral ions, proteins,
nucleic acids, and microscopic organisms using this technique [127].
This technique, which is mainly used in pharmaceutical and therapeutic
chemistry, is used to separate large and small molecules in very thin tubes.
In this method, separation becomes possible by high voltages [128,129].

Numerous theoretical and experimental studies in the field of
separation have been performed using electrophoresis, especially
capillary electrophoresis. Kohl, et al. studied the techniques and
applications of two-dimensional separation systems based on capillary
electrophoresis [130]. In a review study, Lu, et al. investigated the
application of capillary electrophoresis in the separation of glycans
[131]. In a review study, Heller, et al. Examined the principles and
mechanisms of DNA separation by capillary electrophoresis [132].
Ganjizade, et al. Modeled the DNA sequencing in polyelectrolyte-
coated nanopores [133]. Figure 11 shows a schematic of the capillary
electrophoresis process for the separation and arrangement of
molecules [134].
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Numerous other studies have been performed on particle analysis
using capillary electrophoresis. In a review study, Ramos-Payan
et al examined the application of capillary electrophoresis in the
identification and analysis of high complexity samples such as biological
fluids, single cells, etc. [135]. Paul, et al. Reviewed recent advances in
the analysis of antibiotics by capillary electrophoresis. This study briefly
describes the high degree of counterfeiting of antimicrobial drugs with
a focus on its immediate health consequences [136].

Coating

One of the most important limiting factors for human beings from
time immemorial to achieve their dreams has been the limitation in
finding the right materials with the desired properties. Man has learned
over time to meet his needs by improving the properties of materials.
By manipulating and improving the properties of various available
materials, new capabilities can be added to the products. Today, with
the use of advanced technologies, new materials have been produced or
the properties of existing materials have been improved. In this regard,
coating technology is sometimes used to improve physical, chemical,
and mechanical properties. One of the cases in which nanotechnology
is currently widely and effectively used is coating processes as well as
the production of nanostructured materials. Studies on nanocoatings
show that their properties are significantly improved in many cases
compared to conventional coatings. Nano-coatings have a better
thermal expansion coefficient, higher hardness and toughness, and
more resistance to corrosion, abrasion, and erosion compared to micro-
coatings. If the microstructure of the coating reaches the dimensions
of nanometers (up to 10 nanometers), maximum hardness is obtained.
Nano-coatings can have a hydrophobic or hydrophilic surface layer.
Velayi, et al. used super-hydrophobic nano-zinc oxide to coat the
stainless steel membrane and showed that the super-hydrophobic
capability could be used to separate water and oil [137]. In another study,
they synthesized super-hydrophobic Co304 surfaces with micro/nano
hierarchical structures on a stainless-steel grid. They investigated the
chemical stability and self-cleaning properties of the obtained super-
hydrophobic surface. The results of their evaluations showed that the
super-hydrophobic surface of Co,O, exhibited excellent self-cleaning
performance [138].

Application of micro / nanostructured coatings is possible with
different methods such as laser, thermal spraying, chemical, and
electrochemical deposition, etc. [139-141]. One of these methods
is electrophoretic deposition, which is a two-step process in which
charged particles suspended in a suspension under the influence of an
electric field move towards the electrode with the opposite charge and
then become deposited as a dense film on the electrode. This method has
the ability to create a coating with very good uniformity and control the
thickness of the coating [142-145]. In one study, Abdollahi, et al. Used
electrophoretic deposition to form ZSM-5 zeolite layers about a few
microns thick on porous alumina. They succeeded in hydrothermally
modifying the dense uniform zeolite membrane and showed that the
thickness and density of the membrane can be modified by changing the
Si / Al ratio of ZSM-5 zeolite particles [146]. In another study, Saberi,
et al. studied the electrophoretic deposition of zirconia nanoparticles
suspended in a mixture of different solvents (ethanol, butanol, and
isopropanol) and triethanolamine as a dispersant. Their results showed
that the corrosion resistance increases with decreasing voltage applied
during the electrophoretic deposition process [147].

Another application of the coating is to create a thin layer on the
surface of the micro/nanochannel walls in microfluidic equipment. In
a theoretical and experimental study, Monteferrante, et al. investigated

Volume 8: 8-18



Ashrafizadeh SN (2021) Transition of chemical engineering from macro to micro/nano scales

the effect of a polymer coating on the surface of a capillary tube on
electroosmotic current. The density of the polymer, the thickness, and
the charge of the capillary tube change as a function of pH and it is
possible to reverse the flow under acid pH conditions. Therefore, by
covering the surface of the capillary tube with a polymer layer, the
electroosmotic current can be controlled [148]. In another study,
Khatibi et al. Showed that coating conical nanostructures with dense
polyelectrolyte layers significantly improved ionic current rectification
[149]. Another benefit of coating is the superhydrophobicity of the
inner surfaces of micro/nanochannels and ducts, which has always
been of interest to researchers. Superhydrophobic surfaces reduce the
fluid flow pressure gradient and can significantly reduce fluid transfer
costs [150,151]. Speyer and Pastorino studied droplet transfer in a
nanochannel coated with hydrophobic semi-flexible polymer brushes.
They found that as the stiffness of the polymer chains increased, the
droplet transfer rate decreased [152]. Figure 12 shows a schematic of
a microfluidic device with channels covered by a polymer layer [153].

Micro/nano scale transport phenomena

In general, process design and control in micro/nano scale systems
are influenced from channel geometry in regulating temperature,
pressure, and fluid velocity distribution. The classification of
microchannels is presented in Table 3 [154].

Figure 11. Schematic of capillary electrophoresis process for separation and sequencing
of molecules

C—‘

microchannel
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‘-[ |-air plug

Polyelecy — 4
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(=) channel wall (=)
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Figure 12. Schematic of a microfluidic device with microchannels covered by a polymer
layer
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Figure 13. Interdisciplinary approach to creating a new transport phenomena course in the
manufacture of micro/ nanoscale equipment

Table 3. General schemes for channel classification

The range of channel dimention Definition
3mm <D,

200 pm <D_<3 mm
10 pm <D <200 pm
I pm <D <10 pm
0.l ym<D_ <1 pm
D, <0.1 pm

Conventional channels

Minichannels

Microchannels

Transitional Microchannels

Transitional Nanochannels

Nanochannels

Therefore, to build such micro devices, it is important to understand
the basic mechanisms involved in fluid flow and heat transfer properties
in microchannels, because their behavior affects the transport
phenomena for many microelectromechanical systems (MEMS) and
microfluidic applications. Working on a micro or nano scale involves
considering issues, features, and phenomena that may not matter at all
on a macro scale. These characteristics are completely different for gas
and liquid flows. In gas microflows, we encounter four important effects
of compressibility, viscous heating, thermal creep and rarefaction.
Liquid flows, on the other hand, are exposed to other micro-scale
attributes such as surface tension and electrokinetic phenomena [155].

As size decreases, some common theories about the transport of
fluid, energy, and mass need to be revised for validation [156]. As scale
decreases, buoyancy, gravity, and inertia forces become less important,
and viscous and surface forces become more and more prevalent. At
the micro scale, the relative importance of forces in a two-phase water/
oxygen flow stream is reported as follows [157].

Surface forces> Viscose forces > Gravity forces > Inertial forces >
Floating forces

In solving transport phenomena issues, most phenomena depend
on many variables, the analysis of which using the original sample, and
this number of variables, is costly and time consuming. This problem
is solved using dimensional analysis. Thus, instead of using individual
variables, we obtain the relevant dimensionless numbers and use them,
resulting in a reduction in the number of variables. On the other hand,
using the law of similarity resulting from dimensional analysis, the data
of a small sample can be converted into design data of a real sample.
The law of similarity can also be used to make connections between
three transport phenomena. In calculations related to macro-scale
transfer phenomena, dimensionless numbers such as Nusselt, Schmidt,
Reynolds, Prandtl, Sherwood, etc. are used. Table 4 lists some common
dimensionless numbers used in chemical engineering.

It is also common on the micro and nano scales to use dimensionless
numbers for easier classification and understanding of flow behavior
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Table 4. Some common dimensionless and widely used numbers in chemical engineering

Dimensionless |Definition Equation

pUL
Reynolds Inertia/Viscous e

] L3p*pAT

Grashoff Buoyancy/Viscous e

v
Schmidt kinematic viscosity/Mass diffusivity E

u
Prandtl kinematic viscosity/Thermal diffusivity E
Froude Inertia/ Gravitational (g [ARE

hL
Nusselt

Convective/Conductive heat transfer —|—
K

Table 5. Some new and important dimensionless numbers in microscale systems

Dimensionless | Definition Equation
ull
Capillary Viscous/Interfacial
8cY
Llp—
Bond Gravitational/Interfacial %
u
Mach Flow velocity/the local speed of sound E
: : kCh—1
Mean free path/ Representative physical o
Knudsen
length scale Kga
. I 4
Damkahler Reaction rate/Diffusive mass transfer rate E
R R pU”L
Weber Inertia/Interfacial

[158]. In these scales, several dimensionless numbers are more
important, some of which are listed in Table 5. These dimensionless
numbers are defined according to the structural features of the
microsystems.

The Reynolds number (Re) in micro dimensions is usually much
smaller than 1, which indicates the importance of viscous forces in these
dimensions. This indicates a significant pressure drop in the flow and
eliminates the possibility of instability to mix in the system. In addition
to the Reynolds number, the capillary number (Ca) (ratio of viscosity
to surface force) is also very useful in describing and characterizing
the behavior of multiphase flows in micro and nano-channels. Flow
patterns in multiphase systems are classified as segmented flow (drop-
based) and parallel flow [159]. When the viscosity of the flow is constant,
Weber number (We), which is a combination of Reynolds and Capillary
numbers, can be used. Another important dimensionless number is
the Mach number (Ma). In micro-and nanoscale systems, the flow of
a compressible fluid such as air can also become incompressible due to
the low flow velocity, if the local Mach number is less than 0.3. A scale
of Ma <0.3 is required to eliminate compressibility but is not sufficient
and conditions such as sharp density changes must be avoided so that
the fluid flow is almost incompressible. Then incompressible equations
can be used in both gas and liquid [157,158].

When a dilute gas is used as a fluid in microchannels, the velocity on
the wall is not necessarily zero; In other words, the condition of sliding
velocity and temperature jump for the fluid on the solid boundary may
be established. The criterion for detecting and classifying gas flow is the
Knudson dimensionless number (Kn) [160]. Due to the fact that gas flow
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within the slip regime within microchannels is one of the important
topics in fluid mechanics and applied in industry, so the study of
Knudson number in these systems is also important. In a numerical
study, Hettiarachchi et al. Investigated the gas flow heat transfer in a
rectangular microchannel. Considering the sliding conditions and
temperature jump for the wall, they showed that sliding speed increases
the Nusselt number (Nu) and temperature jump decreases this number,
so the effects of both can reduce or increase the Nusselt number [161].
Another dimensionless number that can be important in micro and
nano scales is the Damcohler number (Da). This number indicates the
relationship and ratio of the duration of a chemical reaction (chemical
reaction rate) to the rate of transport phenomena in a chemical system.
In micro-reactors, this number, which is defined as the ratio of the
reaction rate to the diffusion rate, acts as an indicator to check the
performance of the reactor [162].

Fluid mechanics at the micro/nanoscale

There are differences in small-scale fluid flow modeling that result
from 1) Deviation from the assumption of continuity for gas flow 2)
Increase the effect of some additional forces such as electrokinetic
forces 3) Uncertainty about the use of empirical factors from larger scale
experiments and 4) Uncertainty in micro dimensional measurements
including geometric dimensions and operational parameters [154].

Channels and microchannels are used in various types of devices
that deal with single-phase fluid flow. Early applications included
micromachines such as micropumps, microvalves, and microsensors.
This has been addressed with advances in biology and life sciences due
to the need for biological materials such as proteins, DNA, cells, and
chemicals. Later, the field of micromixers attracted a lot of attention
with the development of micro-reactors; Where two chemicals are
mixed before entering the reaction chamber. The main component of
micro/ nano-devices are micro-channels in which the establishment
of flow requires the application of high-pressure gradients. In fact,
among micromachine and microfluidic systems, microchannels are
recognized as one of the basic elements for fluid transport. In addition
to connecting various process chambers, microchannels are used to
transport reactants, separate physical particles, control liquids, mix
chemicals, and cool computer chips. The fluid transfer is done in
several ways in the microchannels used in these devices. Two important
methods of transporting liquids on a small scale are pressure-driven
flows and electroosmotic flows.

Fluid flow within microchannels is present in most natural systems
(such as the brain, lungs, kidneys, blood vessels) as well as man-made
systems (such as turbines, heat exchanger cooling systems, and nuclear
reactors for distillation units). The following four factors are important
for fluid mechanics on a small scale:

 Micro/nanofluid flows are usually slow due to small length scales.

« Boundary conditions are more important in micro/nanosystems
due to the large surface-to-volume ratio.

« Slip conditions may not always apply.

o Chemical composition at surfaces can affect the fluid mechanics of
micro/nanoscale.

As mentioned earlier, electrokinetic phenomena become important
on a small scale. Electrokinetics affects the transport phenomena and
their governing equations. Electrokinetic transport phenomena can be
used for flow control in microfluidic systems containing species and
particles. The Navier-Stokes equation becomes in the form of Eq. 1
considering the electrokinetic effects:
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. Du
—Fp+Vu—pVir = p— 1)
Dt
where 7, 1], i, and p are the pressure_viscosity, velocity, and density of
the fluid, respectively. The parameter “ represents the time and #r of the
electrostatic potential. The third term from the left (bolded) exerts the
electrokinetic effect of microstructural considerations.

In nanofluid systems, similar to micro systems, in addition to
volumetric forces losing their importance, intermolecular forces also
join the group of forces influencing fluid behavior. A fundamental
difference in the study of nano-dimensional fluid transfer with macro
and even micro dimensions is that the assumption of fluid continuity
is challenged. Therefore, in its study, it is no longer possible to use the
relevant equations governing the fluid with the assumption of continuity,
such as Navier-Stokes. Instead, appropriate simulation methods such as
the Boltzmann lattice method, molecular dynamics, and kinetic Monte
Carlo method should be used to understand fluid transfer. All of these
methods require appropriate computational capabilities [163,164].

Heat transfer at the micro/nanoscale

Heat transfer at the nanoscale is different from macro and micro
scales. In structures with characteristic lengths comparable to the
mean free path and wavelengths of heat carriers (electrons, photons,
and molecules), classical laws are no longer valid, and new methods are
used to predict heat transfer at the nanoscale. Although much work has
been done recently in this area, there is still a need to better understand
the thermal phenomena in nanostructures. In addition, the knowledge
of better control and operation of heat carriers in small structures can
open up new avenues for discovering creative applications.

Increasing the surface-to-volume ratio, which is a general feature of
micro/ nanosystems, leads to the increase of convective and radiative
heat transfer rates. For example, the flow inside microchannels has high
heat transfer coefficients [155,165,166]. This is explained by the fact
that in the region where the flow is fully expanded, the Nusselt number
is constant and is defined as Eq. 2.

N hﬂ’h (2)
Nu=

k
Where h, d, and [k are the convective heat transfer coefficient,

R
hydraulic diameter, and thermal conductivity of the fluid, respectively.

The heat transfer coefficient is inversely proportional to the hydraulic
diameter and increases with decreasing hydraulic diameter.

Tuckerman and Pease were the first to propose the use of
microchannels to cool electronic components [167]. Qu and Mudawar
numerically studied the flow and heat transfer inside rectangular
microchannels and gave a detailed description of the characteristics of
mean and local heat transfer, temperature, Nusselt number and heat flux
[168]. Li, et al. performed accurate simulations of heat transfer in silicon
microchannels and investigated the effect of microchannel geometric
parameters and physical properties of the fluid on the flow and heat
transfer by simplifying the 3D heat transfer model [169]. Peterson and
Liu developed a three-dimensional model of flow and heat transfer
within parallel microchannels [170]. Liu, et al. Also investigated the effect
of viscosity on heat transfer within microchannels. They investigated the
effect of viscosity and thermal conductivity on flow characteristics and
heat transfer [171].

There are issues in the transfer of heat by fluids on a small scale.
For example, if the hydrodynamic diameter of the system is less than
10 micrometers, the macro-scale results should be used with caution.
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Also, when the hydrodynamic diameter reaches 100 nm, the interactions
and molecular interactions between the fluid and the solid wall must be
considered [160].

Considering the electrokinetic effects, the energy equation also
changes (the bolded term is added to the equation). The energy
equation can be expressed for the flow of isotropic, Newtonian, and
incompressible fluid in the presence of an external electric field as
follows [172]:

i or

=T + pgEn =.DCL.E (3)
where T, E, ', and £ are temperature, electric field, heat capacity and
time, respectively.

Mass transfer at the micro/nanoscale

The mass transfer equation considering the electrokinetics effect for
an electrolyte solution is expressed as the Nernst Planck equation (Eq. 4).

D;
v. (—Df Vn; — Zfﬂn,— eVfr + un,-) =] (5)

Where D;, 1;, =, I K5 and g are the diffusion coeflicient, number
density, electric charge, mass flux of ion i, Boltzmann constant and
electron charge, respectively.

In a study by Fadaei et al., they studied the mass transfer of ionic
species from nanopores [173]. Zhao, et al. experimentally investigated
the effect of different parameters on the mass transfer rate in a T-shaped
microchannel. Mass transfer coefficients were calculated and the effect
of different parameters was studied. Studies have shown that a decrease
in channel height or a decrease in channel length at a constant Reynolds
number, or a decrease in volumetric flux will lead to an increase in the
overall average mass transfer coefficient [174].

The necessity for change in the chemical engineering
curriculum

Due to the growing need of industry and society for systems with
micro/nano dimensions and their various applications in everyday
life, the need for training of experienced professionals to design and
develop these systems is more felt. In the last few decades, due to rapid
developments in microelectronics and biotechnology, applied research
in the field of micro-coolers, micro-biochips, micro-reactors, and
micro-fuel cells, all of which are microfluidic systems, is expanding
at an extraordinary rate. On the other hand, chemical engineering
textbooks taught in universities are only able to meet the needs of
large-scale processes, and the knowledge gained from them does not
help much to know the mechanisms, behavior, and performance of
small-scale processes. It should be noted that the basic equations of
traditional physics and chemistry do not simulate the evolution of small
scales (especially nanoscale) well.

The main sources for chemical engineering courses in many
countries are still the heat transfer textbooks by Holman [175] and
by Incropera, et al. [176], thermodynamics by Van Wylen [177] and
by Smith, et al. [178], fluid mechanics by Streeter, et al. [179] and by
Munson, et al. [180], mass transfer by Treybal [181], unit operations by
McCabe, et al. [182], reactor design by Levenspiel [183] and Fogler, et
al. [184]. Most of these books were written in the relatively distant past
and can only meet the needs of large-scale processes and large-scale
equipment design (Table 6). In the past two decades, due to significant
advances in micro/ nanotechnology, the need to develop courses
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Table 6. Some common books used in the field of chemical engineering

PorT—

Book Author, Year Ref
*_
Intrwdnction tv
Heat Transfer
Frank P. Incropera, David P. DeWitt, Theodore L.
Introduction to Heat Transfer Bergman, Adrienne S. Lavine; 1985 [176]
Mass Transfer Operations RE Treybal; 1955 [181]
FluidMechanics
. . Victor L. Streeter, K.W. Bedford, E. Benjamin
Fluid Mechanics Wylie; 1983 [179]
Transport
Phenomena s
R. B. Bird, W. E. Stewart, E.
Transport Phenomena N. Lightfoot, Robert E. [185]
Meredith; 1961 |
Unit operation of chemical engineering WL McCabe, JC Smith, P Harriot; 1986 [182]
Introduction to
Chemical Engineering
Thermodynamics
-
Introduction to chemical engineering thermodynamics JM. Smith, HC. Van Ness, MM Abbott; 1950 " b [178]
d v -
CHEMICAL
ReacTIiON
ENGINEERING
Chemical reaction engineering 0. Levenspiel; 1962 [183]
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Table 7. Some useful books for micro and nano-scale chemical engineering

Book Author, Year
e———
Fh:mical Micro
Process Engineering
Chemical micro process engineering: fundamentals, modelling and reactions | V Hessel, H Lowe, S Hardt; 2004 | E
T TR
Nanotechnology
and Microfluidics
Nanotechnology and Microfluidics X Jiang, C Bai, M Liu; 2019
Nanoscale and microscale phenomena: Fundamentals and applications YM Joshi, S Khandekar; 2015
Macro-to microscale heat transfer: the lagging behavior DY Tzou; 2014

Nanotechnology for Chemical Engineers SS Elnashaie, F Danafar, HH Rafsanjani; 2015

Microfluidics and nanofluidics handbook: fabrication, implementation, and

.. SK Mitra, S Chakraborty; 2016
applications

BV Dzyubenko, YA Kuzma- Kichta, Al Leontiev, 11

Intensification of Heat and Mass Transfer on Macro-, Micro-, and Nanoscales Fedik, LP Kholpanov; 2008

Nbegell
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focusing on micro/ nanoscale transport phenomena is felt more. In
fact, the use of design principles is essential for the development of
micro-scale (micro/nano) systems and methods for the production and
commercialization of nanotechnology-based products.

Transport phenomena, i.e., fluid mechanics, heat transfer, and
mass transfer are fundamental topics in disciplines such as chemical
engineering. The existing textbooks on these subjects, which are often
taught at the undergraduate or graduate level, focus more on the
behavior of large-scale systems, and so far limited textbooks for studying
the micro and nano fields required to design and build microelectronic,
microfluidic, and micro-reactors have been compiled [7].

Among the important topics on the microscale are topics related to
electrostatic principles (origin of electrostatic forces, surface charge and
repulsive forces, density of opposing ions at the surface, electrostatic
forces in the presence of electrolytes, the concept of electric double
layer, and Debye length), surface and electrokinetic phenomena, etc.
must be included in the chemical engineering curriculum. For instance,
the book Electrokinetics and colloid transport phenomena, written
by Masliyah, as one of the pioneers of microtechnology in chemical
engineering, can be a good reference for this purpose [185,186].
Therefore, it is suggested that courses in micro/nanofluid flow as well
as in micro-scale heat transfer be added to the undergraduate courses
in chemical engineering. Table 7 presents some useful books that fit
the needs of the day, just for example, for use in chemical engineering.

On the other hand, interdisciplinary courses and the integration
of interdisciplinary knowledge required to design and build micro/
nanodevices can also help educate people in the basic areas of micro/
nanoscience. For example, an interdisciplinary course from three
engineering groups (chemical, mechanical, and plastics engineering)
can cover the principles of micro / nano-scale transport phenomena
required for the production of nano-devices (Figure 13) [7].

Conclusion and outlook

Modern chemical engineering encompasses a scope beyond
conventional process engineering. In recent decades, the miniaturization
of processes into micro/ nano-scale has emerged as a new approach for
all engineering disciplines, and chemical engineering has been a good
ground for the growth of this technology. Systems miniaturization is
growing rapidly, and new ideas have emerged in recent decades. Today, in
addition to dealing with the world of micro-scale, chemical engineering
has moved beyond its traditional lacquer and found close connections
with biology, medical engineering, and most engineering disciplines. To
meet new and emerging needs in chemical engineering, the curriculum in
this engineering major need to be quickly revised to include phenomena
related to micro-and nano-scales. One of the most important parts of
the curriculum that needs to be fundamentally revised is the courses on
transfer phenomena and in particular the topic of heat transfer, which
may require fundamental changes in theory and governing equations
to predict system behavior. Research topics in the field of chemical
engineering will inevitably focus on nanomaterial synthesis, molecular
engineering, downsizing, intensification, and process integration over the
coming decades.
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