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Opinion
The flexibility of cancer nanotechnology allows for the development 

of safer yet more effective nanoparticle-based tools for diagnostic and 
therapeutic applications in cancer research [1-3]. The ultimate goal of 
nanoparticle (NP)-based platforms will be the targeted delivery and 
monitoring of therapeutics to tumors while causing minimum side 
effects [4-8]. In addition to this, NP-based technology has the capability 
to develop novel multiplex systems to combine more than one 
treatment and imaging modalities  for creating a more aggressive and 
effective approach in eradicating cancer [3,9,10]. The first generation 
of NP-based therapies approved by the FDA consists of lipid based 
NP-systems, such as liposomes and micelles [11]. However, more 
attention is given to the development of inorganic NP-based systems, 
such as gold NPs (GNPs) for drug delivery and therapeutics [12-15]. 
The successful delivery of NPs into tumor depends on efficiency of 
crossing few boundaries effectively which involves in vivo delivery, 
tissue transport, and internalization within individual tumor cells as 
discussed in this article. 

In vivo delivery of nanoparticles
The rapid growth of tumor results in leaky vessels allowing NPs 

to permeate into the tumor. In addition, the NPs are retained due to 
the lack of a functional lymphatic system [16-18]. This Enhanced 
permeability and retention (EPR) effect has been exploited to passively 
accumulate NPs within tumors [16-18]. This process is known to be 
strongly dependent on the size of the NPs [19,20]. The lack of lymphatic 
drainage within the tumor also increase interstitial fluid pressure (IFP) 
which can also limit delivery of therapeutic agents [21]. Administration of 
agents that inhibit angiogenesis temporarily could improve the blood flow 
and reduce IFP by pruning immature vessels [21,22].

Penetration of nanoparticles through extracellular 
tumor matrix (ECM)

A tumor with a well-developed collagen network can be 
considered to be physically resistant to transport of NP-based therapies 
[23,24]. Using in vitro tissue models, it was shown that NP transport 
is dependent on their size, tumor cell type, and surface functionality 
[25-27]. The more aggressive and invasive tumour cells secrete 
matrix-degrading proteinases that serve to break down collagen 
and attribute to the differences in ECM and cell layer organizations 
[28,29]. It was observed that the GNPs penetrated deeper through more 
aggressive tumor tissue models [25]. For tumors with a relatively well-
developed collagen network, treatments that reverse or inhibit collagen 

production and assembly can be performed prior to NP-based therapies 
[23]. For example, Ji, et al. down-regulated ECM levels and observed 
an enhanced penetration of a therapeutic agent and suggested that the 
regulation of ECM may become a promising adjuvant therapeutic 
strategy for ECM-rich tumors [24]. Other studies have shown that 
ECM-degrading enzymes and hormones can be used to modify the 
collagen structure to further improve the distribution of NPs in solid 
tumors [30,31]. 

Uptake of nanoparticles at individual cell level
Cellular uptake of NPs is dependent on their size, shape, and 

surface properties. Among the size range 10-100 nm, NPs of diameter 
50 nm have the highest uptake [32-34]. However, it is shown that 
adding polyethylene glycol (PEG) onto NP for in vivo applications 
would change the size dependent NP uptake dynamics at individual 
cell level. PEG is a commonly used molecule to decrease the NP 
surface exposure to proteins, such as opsonin, while improving the 
blood circulation of the NPs [35,36]. 

The limitations of mortifying GNPs with PEG molecules is that 
accumulation at cellular level is decreased. This is due to the lowering 
of binding ability of NPs onto cell surface receptors [35-37]. Peptides 
containing the targeting moieties are being used to improve the 
accumulation of PEGylated NPs [36,38]. It was shown that the 50 
nm was not the optimum size anymore and smaller NPs had a higher 
uptake. It is believed that the higher surface curvature of smaller 
NPs can expose targeting molecules to receptors on the tumor cell 
membrane. 

It is known that in vitro data cannot be extrapolated directly to 
in vivo or clinical settings [39]. However, these in vitro models 
provide useful information in a less complex environment. As a first 
step in this direction, a recent study has shown that NP complexes 
optimized using in vitro models ultimately produced a higher 
accumulation within the tumor [27]. Accumulation of the NPs 
into the cells becomes a more complicated process as they must 
pass more barriers as discussed in this article. Successful clinical 
translation of nanomedicine requires NPs to be accumulated within 
the tumor cells [40]. 
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Figure 1. The successful delivery of NPs into tumor depends on optimizing size and surface properties at all three interfaces (in vivo delivery, tissue transport, and uptake at individual 
cell).  (A) In vivo delivery. B-C) Reach tumor blood vessels and release of NPs into the tumor tissue through it leaky vasculature, respectively. D) Successful delivery at individual cell level.
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