
Review Article 

Frontiers in Nanoscience and Nanotechnology

Front Nanosci Nanotech, 2018         doi: 10.15761/FNN.1000176  Volume 4(4): 1-6

ISSN: 2397-6527

Understanding the safety aspect of biologically synthesized 
agriculturally useful nanomaterials for humans and 
environment
Ayushi Priyam and Pushplata Prasad Singh*
TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India

*Correspondence to: Singh PP, TERI Deakin Nanobiotechnology Centre, The 
Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi 
Road, New Delhi 110003, India, Tel: +91 11 24682100; Email: pushplata.singh@
teri.res.in

Received: November 20, 2018; Accepted: December 27, 2018; Published: 
December 31, 2018

Introduction
Engineered nanomaterials (ENMs) provide novel solutions 

to address various limitations in pharmaceuticals, agriculture, 
engineering, electronics, etc. At present the agriculture sector is under 
tremendous pressure for enhancing the crop-yield to meet the food 
demands of increasing human population across the world. According 
to several international surveys and reports [1-4], various challenges 
come in the way for enhancing crop production in a sustainable 
manner. Besides the natural climatic causes, knowledge gap and poor 
decision making to use modern technology dominate the reasons for 
low agricultural productivity. As a consequence, across the globe, many 
agricultural sectors are still facing issues like dilatory uptake of fertilizers 
and pesticides [5], persistence of unwanted and harmful chemicals in 
crops [6], retention of agro-chemicals in fertilizers/pesticides in the 
soil resulting in deterioration of soil quality [7]; and subsequent run 
off to further environmental components like water bodies [8]. The 
research reports from the field of agriculture-nano-biotechnology 
suggest that nano-science can address several of the contemporary 
issues and help achieve improved yield from the limited resources in 
a sustainable manner [9-11]. Agricultural nanotechnology can provide 
tailor-made solutions for particular agro-climatic zones or soil types 
through development of nano-nutrients, nanocomposites [11], nano-
fertilizers, and nano-pesticides [12]. In addition, the use of novel 
bio-sensors along with modern information technology helps in site 
specific crop management [9]. This enables the farmers to determine 
the accurate amounts of resources such as water, fertilizers, insecticides 
and pesticides. In practicing so, eventually there is optimal utilization 
of these resources, reduction in cost, balance in soil health, prevention 
in additional run –off and most importantly controlling the adverse 
impact on the environment [13]. The on-field applications have also 
been extended to food packaging and storage, where nanotechnology 
reportedly aid in anti-microbial activities [14].  The recent research 
activities for addressing the pressing demands in agriculture by using 
a sustainable approach have yielded a variety of engineered nano 
-materials (ENMs), produced via different synthesis routes (physical, 
chemical or biological [15]). However, these developments have also 
sparked debates regarding the probable health and environmental 
impacts associated with the use of nano materials for agricultural 
improvement [16]. This is largely due to several inconsistent research 
reports that suggest beneficial or harmful nature of certain nano-
materials [17]. The inconsistency between the reports has largely 
arisen due to absence of complete data regarding physicochemical 
characteristics of ENMs and associated interactions with the biotic and 
abiotic components of environment [18,19]. 

A rapidly developing approach aiming at minimizing ENM 
associated health and environment risk is via the use of biological 
entities (as such or their extracts) to design desired nanomaterials. 
The biologically synthesized nanomaterials are hypothesized to be 
more benign towards human health and environment as compared 
to chemically synthesized nanomaterials [20], but a detailed safety 
analysis and risk assessment is a big research lacuna at present. ENMs 
synthesized through biological routes (biogenic ENMs) have an 
additional matrix of biomolecules on the surface by the virtue of the 
synthesis method (Figure 1). The biomolecular components such as 
proteins, carbohydrates, phytochemicals, etc. from the synthesizing 
extracts tend to cap the naïve particles [21,22]. The physicochemical 
properties and behavior of the biogenic ENMs can be characterized 
accurately under idealized conditions, however, when exposed to the 
environment, these tend to acquire different properties due to interaction 
with various biotic and abiotic factors [23]. Herein, proteins and other 
biomolecules interact with surface of ENMs, forming a biomolecular 
corona that critically affects their biological and technical identities 
[24].The bimolecular corona may impacts the in vitro and in vivo 
applications of ENMs, and therefore the mechanistic understanding 
of the biophysical forces regulating their interactions with various 
biological and environmental factors is required to estimate/predict 
influence of the biogenic ENMs on humans and environment.

ENMs dispersal in abiotic and biotic environment
The ENMs, when applied in agricultural fields, can find their way 

to the environmental components: soil, water and air. Interactions 
of bio-corona with different factors such as different electrolytes 
with monovalent and divalent ions, natural organic matter (NOM) 
[25], terrestrial and aquatic plants and animal species; present in the 
natural environment determine the fate of the ENMs transformations 
such as dissolution, agglomeration, sedimentation, interaction 
and release of surface moieties within the immediate surrounding 
[26,27]. This could greatly affect the pathway and extent of emission 
and consequently the impact on the human and environment. Yet, 
it is still an unsolved question to accurately determine the relevant 
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concentrations of applied biogenic ENMs that will be released from 
one stratum to another at any given time [28]. It becomes difficult to 
predict the relevant concentration of biogenic ENMs once released. 
Such a challenge is due to very little data on prevalence of biogenic 
ENM as a prospective, commercially available agricultural product 
[29,30]. Several risk assessment approaches have been used to simulate 
and calculate predicted environmental concentrations (PECs) of 
chemically synthesized ENMs but there is an unfilled gap about the 
biogenic ENMs [31-33].

Most of the inferences on transformation and emission of 
nanomaterials have been drawn by using chemically synthesized 
ENMs [34-36]. However, only a few experiments have been carried out 
under natural conditions to analyze the fate of the biogenic ENMs [37]. 
Research needs to be expedited to identify environmental transportation 
pathways of biogenic ENMs, along with subsequent evaluation of 
their behaviour, fate, dissolution, residence time and concentrations 
within different media – soil, water and air. For this different mass flow 
models can be developed to predict the concentration of nanomaterials 
from manufacturing and after application to various compartments of 
the environment. Simulations may serve as an important area of focus 
to assess the physical and chemical transformations of ENMs once 
adapted in agricultural practices. 

ENM Characterization and Transformation
Risk assessment and life cycle analysis of the ENMs, especially 

biogenic ENMs, is a growing field and demands a comprehensive 
understanding of ENM characterization and transformation. A 
significant contribution on transformation and fate of environmentally 
released ENMs is made by studying complex interaction of ENMs 
with different model systems and mesocosm studies, but several 

challenges harbor the strategies to study ENM safety [38,39]. Many 
of these challenges center on the tension between understanding the 
mechanism of interaction or the ENM transformation as it relates 
to more complex whole organism or ecosystem models [40,41]. The 
complexity enhances when there is an intervention of biogenic ENM 
having an additional bio-corona [42] (Figure 2).

The most common techniques used to characterize ENMs are 
X-ray based (diffraction, absorption spectroscopy and photoelectron 
spectroscopy, energy-dispersive X-ray spectroscopy), electron 
microscopy (transmission and scanning), atomic force microscopy, 
spectroscopy (UV-vis, infrared, atomic absorption and nuclear 
magnetic), zeta potential and dynamic light scattering measurements, 
etc [43]. However, these provide only a static picture of the ENM 
without consideration of the relevant biological environment [44] and 
interaction of different biological macromolecules present in bio-media 
and bio-corona. Such characterization is either performed where the 
biological environment is ignored, in water or organic solvent alone 
or under vacuum, or in oversimplified models systems, such as adding 
BSA to model protein coverage [44]. As the available techniques are 
insufficient to characterize the ENMs all before, during and after 
the applications in agricultural fields [45,46], new characterization 
methods are needed to be studied. These novel techniques can then 
may be exploited to understand translocation and transfer of the 
biogenic ENMs protein adsorption (i.e. opsonisation) on the surface of 
the particle or particle aggregation/agglomeration that may impact the 
uptake/clearance mechanisms [28,44].

Molecular toxicology provides a basis for much of the nano-safety 
assessments for all sorts of nanomaterials and their bulk counterparts. 
However, in relation to risk of cytotoxicity posed by a biogenic ENM 
as compared to its bulk or chemically synthesized ENM counterparts, 

Figure 1. Schematic showing properties of chemically synthesized and biogenic ENMs as compared to bulk form for agricultural applications
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one distinguishing feature of biogenic ENM is the difference in their 
physical characteristics, including size, crystallinity and importance of 
surface charge and surface chemistry. When brought in contact with 
the environment, the ENMs irrespective of their inherent physical 
nature undergo a transformation. This is attributed to high surface area 
and thus high reactivity of ENMs towards various molecules resulting 
in heterogeneous surface composition over them [47,48]. ENM-
transformations are the result of a myriad of reactions or processes, 
including aggregation/agglomeration, redox reactions, dissolution, and 
reactions with naturally occurring macromolecules and biomolecules. 
These dynamic transformations in turn affect the transport, fate, 
and toxicity of ENMs in the body or environment, and therefore, it 
is critical to understand and characterize these transformations. 
Typically, physiological or environmental conditions are simulated in the 
laboratory by modeling ionic strength and protein or NOM content, which 
are also the key players in ENM transformation in natural environment, 
particularly soil and water bodies [44]. 

In these cases, the size of ENMs is an important determinant to 
reactivity, transport, and toxicity, and while the primary particle 
size is always estimated (with electron microscopy); ENMs tend to 
agglomerate in different solutions and biological media which leads 
to an interaction between a biological system and the aggregate 
sized material instead of the nanomaterial. Dynamic light scattering 
techniques are most commonly employed to study stability of ENMs 
in solution [49] or as an aerosol [50]. With respect to aggregation, the 
presence of bio-macromolecules present on the surface of ENM and also 
in media may have varied effects [51]. In the presence of physiological 
factors like varying pH and salinity, the biomolecules behave in a 
dissimilar manner and undergo several biophysical alterations which 
perturbs their native assembly and may result is agglomerative behavior 
[25]. Therefore, the capped/biogenic ENMs respond differently to the 
exposed environment as compared to uncapped ENMs [51].

Understanding aggregation is critical for characterizing transport 
of biogenic ENMs through the body of human and other model 
organisms and environmental compartments. In the body, greater 

aggregation yields larger particles that are cleared from the body by 
the mononuclear phagocyte system [52], and in the environment, less 
aggregation yields lower rates of sedimentation and greater mobility 
[44]. Therefore, understanding the interaction of ENMs under natural 
conditions (e.g. salinities, pH, and molecular species) may enable 
a better assessment of exposure and transport. These aggregation 
studies bring to light the importance of the ENM surface and localized 
environment around that surface in the transformation of the material 
[36,53,54]. Proteins and other biomolecules like fatty acids can act 
upon the biogenic ENM leading to free energy change of the surface 
and/or can influence other ENM transformations [55]. 

Other kind of ENMs (e.g. chemically synthesized metallic ENMs, 
such as, formulations of Au, Ag, Ti, Fe, Zn and Cu [56]) experience a 
similar speciation either in the dissolution to ions or chemical reactions 
that, in turn, could affect other physicochemical changes associated 
with them and ultimately their translocation and toxicity. The interplay 
between the different, dynamic forms of ENMs that may be acquired 
after interaction with the environmental factors discussed above and 
the importance of their state on subsequent transport and toxicity 
necessitates careful time-dependent characterization of biogenic ENMs 
in environmentally relevant conditions [28]. 

Considerations of Model Systems
For understanding a complete functional impact of biogenic ENMs 

on humans and environment, choice of relevant model system and the 
investigation with them is important. Increasing the complexity of a 
model system makes the risk assessment difficult and demands the need 
for the development of advanced methods to address this challenge. In 
particular, it becomes the necessity of the hour to develop a toxicological 
methodology with specific in vitro techniques and models’ systems that 
are high-throughput, reproducible (both intra and inter lab), close to 
mimic human system, as well as predictive of toxic response in vivo. 
In the realm of biological model systems, complex culture systems 
allow for more reliable results and are worthy of further exploration. 
Common biological and ecological model systems are discussed below: 

Figure 2. Interaction of agriculturally relevant biogenic ENM within the environment – a schematic
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Biological Models

Biological studies often utilize two categories of model systems: in 
vivo wherein a whole organism is used, and in vitro, with cells derived 
from live tissues/ organs or immortal cell lines.

For in vitro studies, there is a wide range in model systems. Choices 
must be made when selecting a model cell - between use of primary 
culture or immortal cell lines (i.e. cells isolated directly from an animal 
or a self-propagating cell line) and use of cells of human origin or animal 
origin. Also an assessment needs to be made to see if the physiological 
function of the model cell is relevant, and whether the model cell is 
found in the tissue likely exposed to the biogenic ENM [43]. Ideally 
to study human toxicity, primary culture of human cells are the best 
suitable, but these models are generally restricted to commercially 
available cells capable of continuous propagation or cell types isolated 
from small samples of donor blood such as mononuclear cells [57], B 
lymphocytes, and T lymphocytes [58]. An alternative is to use primary 
culture of cells from animal models that require less regulation [59]. 
The major advantages of using the primary cells are their functional 
and genetic fidelity corresponding to systemic research. Such organ 
specific primary cells can be derived from the relevant animal models 
to understand the relevance of systemic exposure to ENMs. Culturing 
of cells from live model organisms yields a heterogeneous mixture 
of cells that then typically require density gradient or flow cytometry 
sorting to isolate the model cell of interest. These separation techniques 
often damage cells in the process of isolation. Additionally, primary 
culture cells are often obtained in limited numbers and have a limited 
lifetime in culture [60]. Due to these key disadvantages, cell lines are 
commonly used for in vitro testing. A plethora of immortal cell lines 
is commercially available for use as both cancer cell models and 
immortalized representations of normal cells. The major drawback 
of using immortal cell lines is that the mutations required for the 
immortalization of the lines may affect the way the cells respond to 
ENMs [61,62]. To improve the reliability of interpretations from 
immortal models, studies can be compared using different cell lines 
that have the same physiological function. An alternative method can 
be the use of co-culture models to yield a better representation of in vivo 
conditions [63,64], although the presence of two cells in culture may 
lead to cross contamination and thus, can complicate interpretation.

In vivo studies provide vital information to assess the health and 
safety aspects of biogenic ENMs as they are capable to demonstrate 
a systemic response once the model organism is exposed to biogenic 
ENMs [65]. Depending on the potential application of the ENM, 
various animal models or physiological mechanisms can be studied, 
such as zebrafish embryo development [66], rabbit ocular toxicity 
[67], rat pulmonary toxicity [68] or immune cell distributions in mice 
[43]. These types of studies have several limitations including the long 
experimental time required, the high cost, and the ethical concerns 
regarding the treatment of laboratory animals [43]. Yet, in vivo 
studies are necessary to explore ENM bio-distribution and determine 
appropriate cell types to be used in in vitro studies.

In vitro methods are relatively faster, inexpensive and minimize 
ethical concerns as compared to in vivo studies; however, many of 
these methods require more extensive validation with in vivo studies 
to evaluate their toxicological predictive capability and reproducibility.

Ecological Models

Ecological model organisms range from single celled 
microorganisms to plants and higher order animals. The nano-eco-

toxicity generally follows a hierarchical study and thus, choses typical 
model system based on the strata of food web. Microorganisms form 
the lower most strata of a typical food chain and are omnipresent 
in the different ecosystems. Besides their ubiquitous presence, it is 
evident since long that they play important roles in nutrient cycling. 
Nano-safety studies have included commonly used research species 
such as Escherichia coli [69,70], Bacillus subtilis [71] and Pseudomonas 
aeruginosa, [72] Nitrosomonas europaea [73]. The breadth of choices in 
these monoculture systems has led to some challenges within the field in 
generalizing experimental results. That is, the deepest studies utilize the 
common microbial species that may not be environmentally relevant, 
while more environmentally relevant species have been considered 
less thoroughly. To overcome this issue, some research groups have 
pursued toxicity studies on naturally- sampled bacteria [74-76]. 

Although the research involving micro-organisms give an insight 
of impact of ENM on biotic environment, a detailed inference can be 
made only when plant and higher order organism are studied for the 
effects of ENMs on them.

For understanding the implication of agriculturally useful biogenic 
ENMs and to define their eco-nano-toxicity plants play a relevant 
candidate role. Plants have a ubiquitous interaction with ENM 
contained abiotic components viz. air, water and soil. Additionally, 
they have a critical role to play in inter-species transfer and bio-
distribution of ENMs attributed to their consumption by organisms 
at all the hierarchical levels of food chain. Notably, most of the nano-
safety work related to ENM for agriculture has focused on edible plants 
(pumpkin, radish and cucumber) and crops (maize, wheat, soybean, 
tobacco and rice) [77,78]. 

The ecosystems functions in a regulated manner with a number of 
aquatic and terrestrial animals. These make to the major components 
in the food web as food sources. An in-depth comprehension of the 
impact of biogenic ENMs can be directly related to human health. The 
Organization for Economic Co-operation and Development (OECD) 
defines guidelines that consider Japanese medaka [79] and zebrafish 
as standard organisms for aquatic toxicity testing [80,81]. The ability 
to quickly reproduce and having a completely sequenced genome, 
makes zebrafish (a freshwater fish), [82] and medaka (saline habitats) 
important for understanding genetic impacts of biogenic ENMs in the 
environment [83].

Conclusion
Globally, an exponential release in nano-enabled product 

development has been observed since 2000s [84], with a projected 
growth to over half a million tons by 2020 [85,86]. Agriculture being 
the prime area to fulfill the global food requirement will entail the 
applications of next generation nanotechnology [16]. This makes it 
certain that there has been and will be a continuous release of ENMs 
in the environment, which will lead to significant human exposure. 
As an inference, it can be deduced that a thorough understanding 
on impact of ENM exposure is needed to assess the biological and 
ecological implications – both beneficial and harmful. It becomes 
critical within the field of nano-safety to develop specific technology 
that can enable the understanding of impact of biogenic ENM on a 
mechanistic level. Development of methods for clear elucidation of 
the kind of bio-interaction and the effect thereof in various biotic and 
abiotic components of the environment related to biogenic ENMs 
is needed. While it can be assessed that the biological and ecological 
toxicology studies have different aspects, the challenges that are faced 
by the nano-safety community demands interdisciplinary efforts to 
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overcome them. However, the dose dependent response should be the 
preliminary factor to be considered while commenting on the toxic 
effects of biogenic ENMs, as required dose of such ENMs in agriculture 
fields could be much lesser as compared to the bulk materials. Also 
due to virtue of transfer and transformation across the different trophic 
levels in the environment, there are chances that the biogenic ENM 
concentration may get reduced to an inconsequential amount, thereby 
decreasing the probability of an ill-effect to infinitesimal.
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