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Abstract
This paper develops a novel automated image processing algorithm of standard retinal ocular coherence tomography (SD-OCT), that allows for an objective 
investigation of age-related retinal changes in normal subjects, based on automated quantitative reflectivity changes. A database of SD-OCT retinal scans (Zeiss 
Cirrus HD-OCT 5000) was prospectively established from 200 normal subjects without clinical evidence of retinal pathology. A novel segmentation algorithm was 
applied to extract retinal layers and normalize the reflectivity range, utilizing a novel normalized reflectivity scale (NRS) ranging from 0 units (vitreous) to 1000 units 
(retinal pigment epithelium [RPE]). NRS decreased with age overall, with the greatest declines seen in the ellipsoid zone (3.91 ± 2.11 NRS · yr−1,F1,322 = 100.9;p < 
0.0001), and NFL (3.84 ± 1.72 NRS · yr−1,F1,322 = 112.6;p < 0.0001). Normal aging had little to no effect on the reflectivity of RPE or ELM. It was possible to report 
the reflectivity changes in the retina that occur in normal aging subjects. This novel algorithm shows promise of early detection of occult retinal pathology otherwise 
undetectable.

Introduction
Spectral domain optical coherence tomography (SD-OCT) is a 

widely used tool in the evaluation and management of most retinal 
conditions [1-3]. Utilizing interferometry, low coherence light is 
reflected from retinal tissue to produce a two-dimensional grayscale 
image of 5 the retinal layers. Differences in reflectivity of retinal layers 
produce different intensities on SD-OCT scan, allowing for noninvasive 
imaging of the retinal layers [1-4]. This detailed crosssectional 
anatomy of the retina is often referred to as in-vivo histology and is 
instrumental in the assessment of most retinal conditions including 
diabetic retinopathy (DR), age-related macular degeneration (AMD), 
macular hole, macular edema, vitreo-macular traction (VMT),10 
choroidal neovascularization, and epiretinal membrane. SD-OCT can 
be also used to assess retinal nerve fiber layer (RNFL) thickness for 
the evaluation of glaucoma [5]. Retinal layer morphology and retinal 
thickness measurements are used to identify and measure retinal 
abnormalities such as macular edema, and these measurements are 
also used to monitor disease progression and response to treatment 
[1-3]. With the exception of retinal thickness 15 measurements, 
current SD-OCT provides limited objective quantitative data, and 
therefore images must be subjectively interpreted by an eye specialist 
[1]. As a result, interpretation of SD-OCT is susceptible to human 
bias and error. Ideally, OCT data should be tracked quantitatively and 
objectively in order to monitor the progression of abnormalities as 
well as aid in the diagnosis of various pathologies. The purpose of this 
study was to develop a 20 novel automated algorithm that objectively 

quantifies reflectivity of retinal layers from OCT images, and to apply 
this algorithm for the investigation of subtle changes that occur in the 
normal retina with age.

Methods
The proposed method consists of three basic steps:

1. Aligning the input image to the shape database constructed from 
different images.

2. Applying the joint model to the aligned image.

3. Obtaining the final segmentation.

The mathematical details of the proposed joint model are detailed 
below.

Data collection

This study was reviewed and approved by the Institutional Review 

Correspondence to: Ahmed ElTanboly, BioImaging Laboratory, Bioengineering 
Department, School of Engineering, University of Louisville, Louisville, KY 
40292, USA; E-mail: eng.ahmed.hazem@gmail.com 

Key words:  spectral domain optical coherence tomography (SD-OCT), human 
retina, reflectivity, normalized reflectivity scale (NRS), retina segmentation, aging

Received: October 15, 2016; Accepted: October 27, 2016; Published: October 
29, 2016



Schaal S (2016) A novel automated method for the objective quantification of Retinal layers reveals sequential changes that occur in the Normal retina with age

 Volume 2(5): 184-189Front Nanosci Nanotech, 2016         doi: 10.15761/FNN.1000133

Board (IRB) at the University of Louisville - School of Medicine. 
Following IRB approval, subjects were recruited at the Kentucky Lions 
Eye Center, University of Louisville Department of Ophthalmology 
and Visual Sciences, Louisville, Kentucky between June 2015 and 
December 2015. Informed consent was obtained from all participants. 
Subjects with normal retinas ranging in age 35 from 10 to 79 years 
old were included in the study. Past medical history, ophthalmologic 
history, smoking status, and current medications were obtained via 
chart review and subject interview. Persons with history significant 
for any retinal pathology, history significant for diabetes mellitus, 
high myopia defined as a refractive error greater than or equal to -6.0 
diopters, and tilted OCT image were not included in this study. A 
database of SD-OCT 40 scans was prospectively established from 200 
normal subjects using the Zeiss Cirrus HD-

OCT 5000. SD-OCT data were exported for analysis as 8-bit, 
greyscale raw files with size 1024 pixels 1024 pixels N slices, where N = 
5 or 21. For N = 5, the field of view as 6 mm nasal-temporal (N-T) and 
2 mm posterior-anterior (P-A), and the slice spacing was 0.25 mm. For 
N = 21, the field of view was 9 mm N-T and 2 mm P-A, while the slice 
spacing 45 was 0.3 mm.

Automatic segmentation of twelve retinal layers
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denote a grayscale image and an associated region map on a finite 
arithmetic lattice R2 and with values from finite sets Q and L of integer 
intensities and region labels, respectively. An input OCT image, g, co-
aligned to the training database, and its map, m, are described with a 
joint probability model [6]:

P(g,m) = P(g|m)P(m)                                                                            (1)

combining a conditional distribution of the images given the map 
P(g|m), and an unconditional probability distribution of maps P(m) = 
Psp(m)PV(m). Here, Psp(m) denotes a weighted shape prior, and PV(m) 
is a Gibbs probability distribution with potentials V, that 55 specifies a 
second-order MGRF model of spatially homogeneous maps m.

Adaptive shape model Psp(m)
The shape prior is constructed using several training OCT scans 

(6 male and 6 female images in our experiments below), selected to 
capture biological variability of the whole data set. Their ground truth” 
region maps were delineated under supervision of retina specialists. 
Using one of the optimal scans as a reference (no tilt, centrally located 
fovea), the others were co-registered using a thin plate spline (TPS) [7]. 
The shape prior is defined as:

( ) ( ): , ,( , )
  sp sp x y x yx y R
P m P mπ

∈
=                                                                           (2)

where Psp(m) denotes the weighted shape prior, psp:x,y(m) is the pixel-
wise probability for label m, and (x,y) is the image pixel with gray level 
g. The same deformations were applied to their respective ground truth 
segmentations, which were then averaged to produce a probabilistic 
shape prior of the typical retina, i.e., each position (x,y) in the reference 
space is assigned a prior probability P(m) to lie within each of the 12 
tissue classes. An image to be segmented is first aligned to the shape 
database by a new technique integrating the TPS with multi-resolution 
edge tracking that identifies control points to

initialize the alignment. First, “a` trous” algorithm [8] decomposes 
each scan by undecimated 130 wavelet transform. In a three-band 
appearance of the retina, two hyperreflective bands are separated by a 

hyporeflective band, corresponding roughly to the layers from ONL to 
MZ (Figure 1). Contours following the gradient maxima of this wavelet 
component provided initial estimates of the vitreous/NFL, MZ/EZ, and 
RPE/choroid boundaries (Figure 3). The fourth gradient maximum 
could estimate the OPL/ONL boundary, but that is not sharp enough 70 
an edge to be of use. These ridges in gradient magnitude were followed 
through scale space to the third wavelet component, corresponding to 
a scale of approximately 15 micrometers for the OCT scans used in 
this study.

The foveal peak is identified as the closest point between the 
vitreous/NFL and MZ/EZ contours. Then control 135 points are 
located on these boundaries at the foveal peak and at 75 uniform 
intervals from it. Finally, the optimized TPS aligns the input image to 
the shape database using these control points, so that the shape prior 
can be used to segment the aligned image.

	First-order intensity model P(g|m)

To account for visual appearance of the input image, its empirical 
marginal probability distribution of intensities is closely approximated 
with a linear combination of sign-alternate discrete Gaussians (LCDG) 
and separated into individual components (also LCDGs) for different 
regions, associated each with a dominant mode. This model and its 
ExpectationMaximization-based learning are detailed in [9]:

( ) ,( , )
| ( | )xy x yx y R

P g m P g mπ
∈

=                                                                               (3)

where m takes one of the labels from 1 to 12.

Second-order MGRF model PV(m)

For better spatial homogeneity of segmentation, the MGRF model 
of dependencies be-tween adjacent region labels is combined with the 
shape prior and intensity model [9]:

                            (4)

where bi-valued Gibbs potentials V = (V (k,k’) : k,k’∈ L) for the 
nearest8-neighborhood when νs= {(1,0),(−1,1),(0,1),(1,1)}, depend 
on equalityof each nearest pair of labels: V (k,k’) = γ ≥ 0 if k = k’ and 

Figure 1. A typical OCT scan of a normal subject showing the 12-distinct layers.

Figure 2. Illustration of the basic steps of the proposed OCT segmentation framework.
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−γ otherwise. The potentials are approximated analytically from the 
empirical probability of equal label pairs in the training region maps.

The steps of the segmentation framework are illustrated in Figure 
2 whereas Figure 5 shows segmentation results on different SD-OCT 
images from subjects in different decades of life. The performance of the 
proposed segmentation framework relative to manual segmentation 
was evaluated using the agreement coefficient (AC) and the Dice 
similarity coefficient of similarity (DSC) [10,11].

Quantitative data derived from SD-OCT images

Several quantitative data can be derived from the segmented SD-
OCT images in order to optimally characterize retinal morphology. This 
paper specifically addresses and discusses the reflectivity measurements 
that were obtained from two regions per scan, comprising the thickest 
portions of the retina on the nasal and temporal sides of the foveal peak.

Mean reflectivity is expressed on a normalized scale, calibrated such 
that the formed vitreous has a mean value of 0 NRS, and the retinal 
pigment epithelium has a mean value of 1000 NRS. The average grey 
level within a segment was calculated using Hubers M-estimate, which 
is resistant to outlying values that may be present, such as very bright 
pixels in the innermost segment that properly belong to the internal 
limiting membrane and not the NFL.

Average grey levels were converted to NRS units via an offset 
and uniform scaling. Statistical analysis employed ANCOVA [12] on 
a full factorial design with factors gender, side of the fovea (nasal or 
temporal) and retinal layer, and continuous covariate age.

Validation of the proposed approach

Reliability of our technique was assessed using repeated scans of 
eight healthy individuals (7 males, 1 female), which were done for this 
purpose and not part of the aging study. Two scans were obtained from 
each eye. The OCT device was repositioned and refocused on every 
scan. Measurements of retina layer thickness and reflectivity were 
used to quantify the reliability of segmentation and the normalized 
reflectivity scale. Reliability analysis employed mixed effects analysis of 
variance with a fixed constant term and random effects for individual 
subject, lateral position across macula (from 2.5 mm temporal to 2.5 
mm nasal), and retina layer. From the variance component S2, the 
intra-class correlation (ICC)

was used as the reliability metric:

2

2 2 layer

layer residual

s
ICC

s s
=

+
				                  (5)

Results
This section addresses the experimental results after applying the 

proposed segmentation approach on the images collected, followed 
by analysis of the reflectivity measure across the different decades of 
life. The proposed novel segmentation approach was first validated 
using ground truth for subjects, which was collected from 200 subjects 
aged 10–79 years. Subjects with high myopia (≤ −6.0 diopters), and 
tilted OCT were excluded. This ground truth was created by manual 
delineations of retina layers reviewed with different retina specialists 
(SS,AP, AH, DS).

Step-by-step demonstration to show the ability of the proposed 
segmentation approach for a normal subject is shown in Figure 4. 
First, the edges of the input OCT image (Figure 4(a)) is tracked using 
wavelet decomposition method (Figure 4(b)) and is followed by its co-
alignment to the shape database using identified TPS control points 
(Figure 4(c)). Initial segmentation result is first obtained using the 
shape model (Figure 4(d)) then refined using the joint-MGRF model to 
obtain the final segmentation result (Figure 4(e)). More segmentation 
results for normal subjects are demonstrated in Figure 5. The robustness 
and accuracy of our approach are evaluated using both AC and DSC 
metrics, and the AD distance metric comparing our segmentation 

Figure 3. Illustration of wavelet decomposition for an OCT image (A), highlighting the 
large scale structure of the retina in (B). Multiscale edges shown in (C) near the foveal 
peak, inside the bounded region of (A). At the finest level of detail, three boundaries are 
detected (D).

Figure 4. The segmentation steps: (a) an OCT image of a 65 year-old female, (b) edge 
tracking with wavelet decomposition, (c) co-alignment using TPS control points, (d) 
LCDG-modes for different layers, (e) segmentation after using the joint MGRF model, and 
(f) overlaid layers edges on the original image.

Figure 5. Segmentation results for different normal OCT images in row (A). Results of the 
proposed approach are displayed in row (B) and results of the approach13 are displayed in 
row (C). The DSC score is displayed above each result.
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with the ground truth. Comparison with 200 manually segmented 
scans found the mean boundary error was 6.87 micrometers, averaged 
across all 13 boundaries; the inner (vitreous) boundary of the retina 
was place most accurately, with 2.78 micrometers mean error. The 
worst performance was on the outer (choroid) boundary, with mean 
deviation of 11.6 micrometers from ground truth. The AC gives mean 
of 77.2% with standard deviation 4.46% (robust range 64.0%86%). 
Some layers were more accurately automatically segmented than 
others (Figure 5), with Dice coefficient of similarity as high as 87.8% 
with standard deviation of 3.6% in the outer nuclear layer (robust range 
79.2%95.1%) but low as 58.3% with standard deviation of 13.1% in the 
external limiting membrane.

Additionally, the advantage of the proposed segmentation 
technique is highlighted by comparing its performance against graph 
theory based approach [10]. This approach produces mean boundary 
error 284 micrometers; only the RPE/choroid boundary was reliably 
detected, with mean error of 15.1 micrometers, standard deviation 
8.6 micrometers. The AC was very law whereas the DSC mean 
30.3% with (s.d. 0.358) in ONL–EZ (outer nuclear layer and inner 
segments of photoreceptors) and 40.7% with (s.d. 0.194) in OPR–RPE 
(hyperreflective complex). DSC mean zero elsewhere. Comparative 
segmentation results of our approach versus another one [13] for some 
selected data are shown in Figure 5. Table 1 summarizes the quantitative 
comparison of our segmentation method and the other method [13] 

versus the ground truth, based on the three evaluation metrics for 
all subjects. Statistical analysis using paired t-test demonstrates a 
significant difference in terms of all three metrics of our method over 
[13], as confirmed by p—values 150 < 0.05 (Table 1). This analysis 
clearly demonstrates the promise of the developed approach for the 
segmentation of the OCT scans.

After excluding low quality and tilted scans, reflectivity was 
measured in the right eye of 138 women and 62 men, between 10 and 
76 years of age. The female subgroup was slightly older on average at 
43.7 years compared to 37.6 years for the male subgroup (t106 = 1.91;p 
=0.059).

Normalized reflectivity varied significantly with age (F1,4368 = 327; p 
< 0.0001), gender (F1,4368 = 5.11;p = 0.024), and layer (F11,4368 = 2330; p < 
0.0001), but not side of the fovea (F1,4368 = 0.424; p = 0.515). The slope, or 
year to year change in NRS, varied significantly by retinal layer (F11,4368 
= 14.77; p < 0.0001). The interactions of side of the fovea with layer was 
statistically significant (F11,4368 = 29.1; p < 0.0001). No other terms in the 
model were significant. The gender effect, while statistically significant, 
amounted to only 1.4 NRS (male ¿ female). NRS decreased with age 
overall (Figure 6), with the greatest declines seen in the ellipsoid zone 
(3.43 NRS/year), and NFL (3.50 NRS/year). Normal aging had little to 
no effect on the RPE (0.72 NRS/year).

Analysis of repeated scans from eight healthy individuals produced 
ICC estimates of 0.813 and 0.831 for retina layer thickness and 
normalized reflectivity, respectively. These values indicate “good” 
agreement between segmentation of different scans of the same eye, 
using the ICC cutoff values suggested by Indrayan [14].

Discussion
170 Ophthalmic OCT, first introduced in 1991 by Huang et al. [4] 

practically revolutionized ophthalmic practice. SD-OCT is an essential 
part of the modern retinal evaluation, which provides invaluable and 
unsurpassed clinical information, otherwise unavailable. The basic SD-
OCT image is a histology-equivalent optic reflectivity B-scan retinal 
section. To-date, all SD-OCT images are manually interpreted by an 
ophthalmologist on the basis of anatomic appearance and human 
pattern recognition. The need for an automated processing and 
an un-biased interpretation of retinal scans is pertinent. Accurate 
reproducible automated SD-OCT image analysis will enable earlier 
identification of retinal conditions, enable better follow up strategies 
and plans, eliminate human errors, and allow more efficient and cost-
effective patient care. Although initial preliminary automated image 
processing exists in some commercially available SD-OCT models, it is 
currently limited to retinal thickness, retinal volume and partial retinal 
segmentation.

Segmentation of retinal layers from SD-OCT images has been 
previously attempted by several groups. Several notable achievements 
and pitfalls are worth discussing. Ishikawa et al. [15] developed an 
automated algorithm that identifies four retinal layers using an adaptive 
thresholding technique. This algorithm failed with poor-quality images 
and also failed with some good-quality ones. Bagci et al. [16] proposed 
an automated algorithm that extracted seven retinal layers using a 
customized filter for edge enhancement in order to overcome uneven 
tissue reflectivity. However, further work is needed to apply this 
algorithm to more advanced retinal abnormalities. Mishra et al. [17] 

applied an optimization scheme to identify seven retinal layers. The 
algorithm could not separate highly reflective image features. Another 
automated approach was proposed by Rossant et al. [18] to segment 
eight retinal layers using active contours, k-means, and random Markov 
fields. This method performed well even when retinal blood vessels 
shaded the layers, but failed in blurry images. Kajic et al. [19] developed 
an automated approach to segment 8 layers using a large number of 
manually segmented images that were used as input to a statistical 
model. Supervised learning was performed by applying knowledge of 
the expected shapes of structures, their spatial relationships, and their 
textural appearances. Yang et al. [20] devised an approach to segment 
eight retinal layers using gradient information in dual scales, utilizing 
local and complementary global gradient information simultaneously. 

Evaluation Metric
DSC AC,% AD, µm

Our approach 0.76 ± 0.16 73.2 ± 4.5 6.87 ± 2.8
Other 13 0.41 ± 0.263 2.25 ± 9.7 15.1 ± 8.6
p−value < 0.0001 < 0.0001 < 0.00395

Table 1. Comparative segmentation accuracy of the proposed segmentation and13 using 
(DSC), (AC), and (AD) metrics. Values are represented as mean ± standard deviation.

Figure 6. Slopes showing the decline of the reflectivity for the twelve layers with age, 
along with their 95% confidence intervals.



Schaal S (2016) A novel automated method for the objective quantification of Retinal layers reveals sequential changes that occur in the Normal retina with age

 Volume 2(5): 184-189Front Nanosci Nanotech, 2016         doi: 10.15761/FNN.1000133

This algorithm showed promise in segmenting bothhealthy and 
diseased scans, yet more work is needed to evaluate it on retinas 
affected with outer/inner retinal diseases. Yaz et al. [21] presented a 
semi-automated approach to extract 9 layers from OCT images using 
Chan-Veses energy-minimizing active contour without edges model. 
This algorithm incorporated a shape prior based on expert anatomical 
knowledge of retinal layers. The proposed method required user 
initialization and was never tested on human retinas nor on diseased 
retinas. Ehnes et al. [22] developed a graph-based algorithm for retinal 
segmentation which could segment up to eleven layers in images of 
different devices. The algorithm yet worked only with high-contrast 
images. Kafieh et al. [23] also used graphbased diffusion maps to 
segment the intraretinal layers in OCT scans from normal controls and 
glaucoma patients. Chui et al. [13] proposed an automated approach 
for segmenting 7 retinal layers using graph theory along with dynamic 
programming, this method accurately segments eight retinal layer 
boundaries in normal adult eyes more closely to an expert grader which 
reduced processing time. Rathke et al. [24] proposed a probabilistic 
approach that models the global shape variations of retinal layers 
along with their appearance using a variational method. Kaba et al. 
[25] also segmented 8 retinal layers, but using continuous maximum 
flow algorithm, that was followed by image flattening based on the 
detected upper boundary of the outer segment (OS) layer in order to 
extract the remaining layers boundaries. Srimathi et al. [26] applied an 
algorithm for retinal layer segmentation that first reduced speckle noise 
in OCT images, then extracted layers based on a method that combines 
active contour model and diffusion maps. Ghorbel et al. [27] proposed 
a method for segmenting 8 retinal layers based on active contours 
and Markov Random Field (MRF) model. A Kalman filter was also 
designed to model the approximate parallelism between photoreceptor 
segments. Dufour et al. [28] proposed an automatic graph-based multi-
surface segmentation algorithm that added prior information from a 
learnt model by internally employing soft constraints.

Graph theory approach was also employed by Garvin et al. [29] for 
segmenting OCT retina layers, while incorporating varying feasibility 
constraints and true regional information. Tian et al. [30] proposed 
a real-time automated segmentation method that was implemented 
using the shortest path between two end nodes. This was incorporated 
with other techniques, such as masking and region refinement, in order 
to make use of the spatial information of adjacent frames. Yin et al. 
[31] applied a user-guided segmentation method that first manually 
defined lines at irregular regions for which automatic approached fail 
to segment. Then the algorithm is guided by these traced lines to trace 
the 3D retinal layers using edge detectors that are based on robust 
likelihood estimators.

The above discussion demonstrates that there are some limitations 
associated with retinal layers segmentation such as the low accuracy 
achieved when having images with low signal to noise ratio (SNR), and 
the fact that the majority of the proposed approaches could segment 
only up to eight retinal layers, while methods that segmented more 
layers were successful only with high-contrast images.

In order to overcome the aforementioned limitations, this paper 
proposes a novel algorithm to automatically segment 12 retinal 
layers (Figure 1), and analyze their reflectivity. It employs a hybrid 
segmentation model that combines intensity, spatial, and shape 
information. To the best of our knowledge this is the first study to 
demonstrate fully automated segmentation approach that has the 
ability to extract 12 layers at different decades of life, which allowed the 
detection of subtle changes that occur in the normal retina with aging.

The computerized automated data analysis revealed subtle but 
clinically significant quan-titative characteristics of retinal layer 
reflectivity and demonstrated significant changes throughout the 
decades of life and between genders. The novel automated algorithm 
provides additional quantitative measurements of SD-OCT images and 
revealed that the normal aging process results in significant changes in 
the reflectivity of the ellipsoid and nerve fiber layers. This adds to our 
understanding of the decline in visual function that occurs in normal 
human aging.

The retina, being a direct derivative of the brain, cannot heal 
and does not regenerate. To-date retinal diseases are detected after 
substantial anatomical damage to the retinal architecture has already 
occurred. Successful treatment nowadays can only slow disease 
progression, or at best preserve existing visual function. Revealing 
the normal topographic and age-dependent characteristics of retinal 
reflectivity and defining rates of normal agerelated changes, will enable 
us to detect pre-disease conditions. This carries the promise for the 
development of future preventive retinal medicine that will allow 
early detection and early treatment of retinal conditions prior to the 
recognition of advanced anatomy-distorting clinical findings that is 
available today. 
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