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Abstract 
It is proved that if a smooth function ( )u x , 3x∈� , such that ( )inf 0s S Nu s∈ > , where Nu  is the normal derivative of u on S, has a closed smooth surface S of zeros, 
then the function ( ) ( )u x xυ+∈  has also a closed smooth surface S∈  of zeros. Here υ  is a smooth function and 0∈>  is a sufficiently small number.
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Introduction 
Let 3D ⊂ � be a bounded domain containing inside a connected 

closed C3-smooth surface S, which is the set of zeros of a function 
)3u C D∈ , so that Consider the scattering problem:

0u s =                     (1)

Let sN N= be the unit normal to S, such that ( )Nu u s= ∇ , where Nu
 

is the normal derivative of u on S. Let :u u υ∈ = +∈ , where ( )3C Dυ∈ and 
0∈> is sufficiently small. Assume that

( ) 1inf 2 0
s S

u s c
∈

∇ ≥ > , 
1 0.c const= >                 (2)

The purpose of this paper is to prove Theorem 1.

Theorem 1. Under the above assumptions there exists a smooth 
closed surface S∈  such that 0u∈ = on S∈ .

In Section 2 Theorem 1 is proved.

Although there are many various results on perturbation theory, 
see [2], [3], the result formulated in Theorem 1 is new.

Proof of Theorem 1 
Consider the following equation for t:

( 0u s tN s tNυ+ +∈ + =                           (3)

where (N N s=  is the normal to S at the point s and t is a parameter. 
Using the Taylor’s formula and relation (1), one gets from (3)

( 2 0,t u s N s N s tυ υ φ∇ ⋅ +∈∇ ⋅ +∈ + =                     (4)

where 2t φ  is the Lagrange remainder in the Taylor’s formula and

(
3

, 1
,

i j i jx x x x i j
i j

u s tN s tN N Nφ θ υ θ
=

 = + +∈ + ∑  (0,1θ ∈                (5)

Since the functions u and υ  belong to C3(D), the function 
( , ,t sφ φ= ∈ has a bounded derivative with respect to t uniformly with 

respect to s S∈  and (0,1∈∈ .

Consider equation (4) as an equation for t = t(s) in the space C(S). 
Rewrite (4) as

( 1 12 : .t u s N s N s t u s N s N Btυ υ φ υ
− −

= −∈ ∇ ⋅ +∈∇ ⋅ − ∇ ⋅ +∈∇ ⋅ = (6)

Let us check that the operator B satisfies the contraction mapping 
theorem in the set

( 1
: : max ,s SM t t s u s N s N sυ υ δ

−

∈= −∈ ∇ ⋅ +∈∇ ⋅ ≤ (7)

where 0δ >  is a small number, and (M C S∈ .

First, one should check that B maps M into itself. One has

) ( ) ( )( ) ( ) ( ) ( )

2
1

max max .s S s S

t
Bt s u s N s N s

u s N s N
φ

υ υ
υ

−

∈ ∈−∈ ∇ ⋅ +∈∇ ⋅ ≤
∇ ⋅ +∈∇ ⋅

   (8)

We have chosen N so that ( ) ( )u s N u s∇ ⋅ = ∇ . This is possible 
because equation (1) implies that )u s∇ is orthogonal to S at the point 
s S∈ . Assumption (2) implies that for sufficiently small ∈one has

( ) 1inf .
s S

u s c∈∈
∇ ≥                        (9)

Since φ  is continuously differentiable, one has

( )
( ) 2

, 0,1
sup , ,

s S t
t s cφ

∈ ∈
∈ ≤ .                      (10)

Therefore, if

) ,t s δ≤                  (11)

Then

( ) ( )
( ) ( )

2
2

1

, ,
,

t s t s c
cu s s N

φ
δ

υ
∈

≤ ≤
∇ +∈∇ ⋅

                    (12)

Provided that

2

1

1.c
c
δ ≤                  (13)

Thus, if (13) holds then B maps M into itself.

Let us check that B is a contraction mapping on M. One has

( ) ( )1 2 2
1 2 1 1 1 2 2 3 1 2, , , , ,Bt Bt c t t s t t s c t tφ φ−− ≤ ∈ − ∈ ≤ −          (14)

Where )3 0,1c ∈ if δ is sufficiently small. Indeed,
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( ) 2
3 , 4max 2 , , 1,s S tc t t s t c

tδ
φφ δ∈ ≤

 ∂ 
= ∈ + ≤ < ∂ 

                 (15)

if δ is suciently small. Here 4c  is a constant.

Thus, B is a contraction on M. By the contraction mapping 
principle, equation (6) is uniquely solvable for t. Its solution t = t(s) 
allows one to construct the zero surface S∈of the function u∈by the 
equation ( )r s t s N= + , where ( )r r s= is the radius vector of the points 
on S∈ .

Theorem 1 is proved.

Remark 1. Condition (2) is a sufficient condition for the validity 
of Theorem 1. Although this condition is not necessary, if it does not 
hold one can construct counterexamples to the conclusion of Theorem 
1. For example, assume that ( ) 0u x ≥  and ( ) 0u x = on S, and let 0υ >  and 

0∈> . Then the function u u υ∈ = +∈  does not have zeros in 3� .

Remark 2. In scattering theory the following question is of 
interest: assume that ( )u x is an entire function of exponential type, 
( ) ( )2

,ik x

S
u x e f dβ β β⋅= ∫  where ( )2 2f L S∈ , 2S  is the unit sphere in 3� . Assume 
that 0u =  on S, where S  is a closed smooth connected surface in 3� .

Is there another closed smooth connected surface of zeros of an 
entire function u∈  of exponential type, ( ) ( )2

,ik x

S
u e f g dβ β β β⋅
∈ = +∈  ∫  where 

( )2 2g L S∈  and 0∈>  is a small parameter?

We will not use Theorem 1 since assumption (2) may not hold, but 
sketch an argument, based on the fact that S in the above question is 
the intersection of an analytic set with 3� , see, for example, [1] for the 
definition and properties of analytic sets. The functions u  and u∈ in 
Remark 2 solve the differential equation

2 2 0u k u∇ + =  in 3� , 2 0.k const= >                 (16)

The function Nu  may vanish on S at most on the closed set Sσ ⊂
which is of the surface measure zero (by the uniqueness of the solution 
to the Cauchy problem for equation (16)). For every point \s S σ∈  the 
argument given in the proof of Theorem 1 yields the existence of t(s), 
the unique solution to (6). Since S is real analytic the set S∈

� , defined 
in the proof of Theorem 1, is analytic and is a part of the analytic 
set defined by the equation 0u∈ = . In our problem S is a bounded 
closed real analytic surface. The set S∈

� can be continued analytically to 
an analytic set which intersects the real space 3�  over a real analytic 
surface S∈ . It is still an open problem to prove (or disprove) that the 
analytic continuation of the set S∈

� intersects 3�  over a bounded closed 
real analytic surface 3S∈ ∈� .
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