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Abstract

A new approach modeling the fails in biological tissue is here proposed. Under the assumption that the cell membrane may be modeled, similarly as neo-Hookean
materials, I develop the problem in the framework of nonlinear elasticity. I try to model the ice nucleation phenomenon when freezing and thawing occurs in cellular
cryo-preservation. The generated surface of the ice seed can be either soft or wrinkled and, in the latter case a punch contact against the cell membrane take place.
Restricting the attention on rescaled mono-dimensional sub-set, we extend the structured deformations theory by Del Piero & Owen, in the proposed model. I find
a particular solution in agree to the classical fracture models besides a response function in according to the stress and strain fields distribution in biological materials.

Developing the paper in two parts, in this one take care of nonlinear elasticity and biomechanics fundamentals.

Introduction

One remarkable question easily in cellular biomechanics is how
do cells sense and respond to mechanical stresses applied over the
cell surface. Despite ample evidence that mechanical forces and
mechano-transduction are critical for many cell functions including
growth, proliferation, protein synthesis and gene expression, the
specific mechanisms of mechanical force transmission remaining
elusive [1]. For instance, understanding the molecular basis for
mechano-transduction requires knowledge of the magnitude and
distribution of forces throughout the cell at the molecular scale. A
variety of different methods have been used to mechanically stimulate
a cell, and the cellular response is multifaceted and diverse [2]. Both
continuum and microstructural approaches have been used to
determine force distributions. In the case of a continuum model, the
details of the microstructure are ignored, and the forces transmitted
via the individual microstructural elements are described in terms of
stresses and corresponding strains, each assumed to be averaged over
a distance many times greater than the characteristic dimension of
the microstructure. Continuum models have frequently been used to
obtain an estimate of cell stiffness, generally characterized by a Young’s
modulus or shear modulus, from experiments in which the cell is
deformed by external force application. For vary studies, about cell
integrity such models are also useful in determining the distribution of
stresses to regions of the cell remote from the site of force application
and, from that, the force levels acting within individual sub elements.
Here we will turn out our interest towards the cell or cellular membrane
damage and or fracture. The investigation of damage mechanism
in cells is important in biology as well as in medicine. Particularly,
cryopreservation and cryosurgery together whit diagnostic purposes,
for the pathologist, are some of the fields where a good knowledge of
the effects and mechanism having great significance. Again, biological
metabolism in living cells dramatically diminishes at low temperature,
and then permits the long-term preservation of living cells and tissues
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for a multitude of bio-medical applications. Biologically speaking, it’s
of primary importance, in the cryobiology field, the events surrounding
extra or intracellular ice formation during freezing of biological cells.
There are two general mechanism of ice nucleation [3]: the first one,
when homogeneous nucleation in which the ice phase must be initiated
by water molecules combining together to form a cluster of molecules
in the solid phase. The second one, when nucleation of the ice phase
occurs on hetero-phase impurity and ice is said to form heterogeneous
nucleation. However, in both cases it’s possible to verify the origin of
a glassy phenomenon over the intracellular and extracellular solution.
In fact the living cells can be damaged by the cryopreservation process
itself. All of this can cause significant biomechanical damage (extra
and intracellular) during warming of cells cryopreserved by freezing
with consequent cellular death. In this work, I will present a novel
method for the cellular stress analysis, which uses variational approach
through direct and no-direct methods, to compute stresses as well as
displacements within the cellular membrane in response to a small
localized variable load. The complex heterogeneity of the question
takes me to develop the argument in more parts in order to be able
to treat them clearly as well as complete form. In this first part a
framework to nonlinear elasticity other than biomechanics extensions
was regarded, successively entering on damage and fracture field. After
classic variational approach, bio membrane elasticity and structural
deformation theory have been implemented, focusing analytically on
more evident effects of the load conditions on the cell membrane under
freezing conditions.
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Non-linear elasticity framework

Through this paper we use the nonlinear elasticity framework to
represents the mechanical response of the biological cell constituents.
Here we consider the materials as hyperelastic governed by constitutive
law, linking the Piola-Kirchhoff T* stress tensor and Cauchy-Green
right strain tensor C=F "F and for this explanation we referring to
Antman [4] and Taber [5]. We define W as the strain density potential
and the hyperelasticity property involved in the relation:

T* = 28_W M

oC

Here F is the deformation gradient defined as F = dx/0X . In the
isotropic case W = W(C) and so the strain potential depends only by
the C invariants named W= W( I, II, IIl ). Under the assumption of
the incompressibility that is, ] = det; F = 1, the dependence becomes
only among two invariants and then, I, = I, I, = II,, where B is the
Cauchy-Green left strain tensor B = FF ". The follow constitutive law
appears in Cauchy stress tensor terms:

T =ay +aB+a,B’ ®)

where the scalar coefficients (,=(, (I)_,,, were defined as material
response functions, while I represent the identity tensor. The equation
(2) can be specialized on different materials sets, particularly, as in the

neo-Hookean type:

T=-pl+u°B ®)

The next modification of the equation (3) offers the constitutive
equation for biological tissues:

T=—pl+u’Bexpy(l,-3) (4)

As clearly showed in the classic literature, [6] and [7], now it’s
possible to characterize the answer of the biological tissues in energy
terms. Many proposals have been developed to the energy forms
starting from neo-Hookean, Mooney-Rivlin types or in poly-convex
form. Here I will require a general form to the bio-tissue energy since
the next proposed theoretical model is qualitative.

Biomechanics of stress diffusion damage and fracture

In this section our aim is explain the cellular membrane behavior
when subjected to high deformation values. To show with a greater
clarify T start with the classic assumptions in stress diffusion,
damaging, fracture and then specializing in the bio-mechanical case.
Here the significant aim is to investigate the mechanical response
of frozen biological tissues to external compressive load done by ice
crystals. In fact the mechanical interaction among ice-needles and cell
membrane also enhances the destruction during the phase transition
processes, causing localized mechanical stresses on the boundary cell.
In other words these mechanical stresses are acting as a destruction
mechanism causing permanents deformations and cracking in the bio
tissues. Again damage in cell membranes appears after the mechanical
stresses to contraction of the frozen tissue. A large literature has been
developed over this field and only some reference were recalled as [8,9]
and particularly in the paper [10] were showed some experimental
results about the cellular membrane damaging. Now, in this time
a fundamental claim will be placed, namely: what is the mechanical
response in the biological materials under stress? These considerations
to the purpose to specify the background hypothesis, such that to model
the phenomenon. According to Gao [11] likely to the biopolymers
behavior, the cellular membrane answer represents a local fast re-
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distribution; a slow before of a re-arrangement when undergo to the
long-range interaction. So, it’s possible a stress map hypothesis with
different zones around the high concentration stressed area (or fracture
surface). Near this last I find a surrounding viscous dissipation zone
(even damage area) and on the outside, a fully relaxed zones. After
these evaluations, becomes obliged to deepen the mechanical questions
explained in the following paragraphs.

Stress diffusion problem

In according to Villaggio [12,13] the more meaningful results
in elasticity depend by the bounded domains hypothesis. However
in many problems, size and configuration forms are such that the
unbounded configuration becomes an easy way to resolve the problem.
Now, in this case and roughly speaking I need to a configuration
likely to the Flamant’s problem, under the natural restraint as the
Lame’s modules, other than Toupin and Knowles theorems validity
[12]. Consequently when I will find a solution, about the stress state
produced by concentrate load acting on the boundary of an elastic
half-plane I discovered just only stress component different to zero.
So, the radial stress value expresses the fact that the concentrated load
produces only radial stresses. On this consideration from now start
the analysis of the laws stress propagation when a contact among two
different bodies appears. In other words, considering the biomechanical
problem in evaluation, without loss generality I will study an equivalent
elastic-static problem, as a punctual load acting perpendicular on a
curved surface. All the previous consideration allows making a suitable
analytical model. In other words, to arrange stress and strain fields after
the ice-needle cellular membrane contact. Figure 1 showing the real
situation and address how to model the contact neighborhood.

Considering an opportune polar coordinates reference (r, 6, ¢)
where the ice load p is acting over the origin towards the half-space y >
0 then, the classical approach, after some calculations, takes the stress
components:

—p
T, = Py [2(2—v)c059—1+2v]

~ —p(1—2v)(c0529+0059—1)

T, =
HH 27r* (1+cos 0)
—p(1-2v)cosOsend
TrH = p( 2 ) 4)
27r* (1+cos )
So, with this procedure only few cases can be easily showed as
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“

J
U

|

Figure 1. Ice sharp surface after freezing (from [14]).
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inclusive to the singularity effects which damage and, particularly,
fracture. From comparison and confirm, to the experimental cell
mechanics we referring to [15]. Generally, when the membrane
curvature changes I need to introduce a singular solution in addition to
equations (4) to adequate the resolution problem, but these additions
are involving in a very analytical complication admitting long as well as
laborious closed form solutions. To slenderize the problem is necessary
a better physical specification and in the next I will be able for this.
From mechanical point of view I can reduce the problem focusing it in
the contact point among the punch load and the membrane surface. So
that I find the classical solution describing the balanced configuration
of a planar membrane subject to a given concentrate in-plane load
other than, a given displacement field over the boundary. Under these
assumptions the natural way to formulate the equilibrium problem is
to look for the configuration minimizing the strain energy functional:

k .
W:Ejﬂuz(x)dQ (5)

where k represents the membrane bending stiffness and u is the
displacement field. The variational problem (5) can be reduced to the
abstract form:

ue subset K :{V € Hl,v(x)ﬁy/ﬂx)} such that W(u)SW(v)VveK,

If functional W is convex and the subset K is a convex-cone the
problem admits only a unique solution [19]. But even if this approach
seems decisive, unfortunately consistent difficulties are emerging.
Specifically, some restraints about the convex claim the deformation
energy other the missing of the fracture energy. Consequently, the
classical approach into the finite elasticity framework appears as very
inadequate to this step and press to find a different approach.

Damaging and fracture

Description of fracture or damage processes by means of continuum
models has attracted great interest in different fields of engineering,
mathematics, materials and no last even in biology and biomechanics.
Here is necessary to do a fundamental consideration in order to ensure
optimized strength and toughness of bio-membrane structure. Fracture
of bio-solids involves breaking of atomic bonds, which is an intensively
nonlinear process. In order to model failure mechanism in bio-solids
in different size, I observe that multi-scales energies are necessary. In
other words, the micro-scale cohesive force, jump to the deformation
energy density at macro-scale.

Consequently, to model any material soft-body under stress, I
need of general as detailed relationship or, roughly speaking, I need
to represent, contemporarily, the configuration body as unfractured
and fractured. So, considering the bio-medium as joined by cohesive
force, when the cracks are distributed, the constitutive equations
usually present it a strain softening branch, which approaches the
zero stress value when crack has fully developed. All this, generally,
involve in a problem of no-convex minimization and so the direct
method in calculus of variation fails. Relatively to overcome this
difficulty common tools consist to complete the continuum problem
with particular conditions. In fact, the strain localization is zero in
opportune sets. From a mathematical point of view, the variational
approach specializes the join among the bulk energy W = W(C) with
a cohesive fracture energy, function of the displacement discontinuity.
In this way on the Q body, the variational problem holds in the form:

minJ.QW(C)dQ+Z’_€/“G(u(x,.)) (6)
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where J denotes the set of discontinuity points of u and u(x,) represents
the jump of u at x,

Structured deformation theory

Structured deformations, introduced and developed by Del
Piero & Owen [16-18], provide a natural way to describe not only
the smooth deformations of classical solids other than the piecewise
smooth deformations of fracture, but also more complex combinations
of macroscopic and microscopic changes. Setting the problem on the
SBV-space (special functions of bounded variation) [19], to as notorious
from elasticity theory, the class of simple deformations is adequate
to describe macroscopic fracture located on opportune singular
surfaces. Adjusting some sequence of simple deformations, it becomes
possible to model diffuse fractures throughout the body. A structured
deformation can be identified by a pair (g,G)ge ESBV(Q)] and
G e[L‘ (Q)] The pair [ g,Vg]corresponds to simple deformations
without microstructure and the difference vg — G represents simple
deformations due to microscopic rearrangements. Any structured
deformations can be approximated by simple deformations [u,,Vu, |
so that the sequence u, — g in L (Q) . Criterion to try both an effective
energy and an approximate sequence is given by the minimization of:

H&inf QW(Vuh)—kJ‘J“h9<u;(x)—u,;(x)vuh (x)dH"  (7)

The formula (7) asserts the condition of the total energy
minimization, representing it the elastic part (simple deformation)
coexisting with fractured parts (jump set).

To fit structured deformation theory (SDT) at ours question I
consider one opportune membrane strips undergoing at ice punch
contact. Without loss generality I suppose the strip as clamped both left
and right edge. The strip has high flexural deformations and following
the previous assertions it’s possible suppose the moment - curvature
diagram as in Figure 2. Supposing u as vertical displacement and 1 the
rotation among two sections of the membrane strip then follow the
relation @(x)=u'(x). Under the clamped boundary conditions u and
u’ equals to zero in both edges. Now applying SDT I introduce the pair
(w, A) where A represents the elastic part of the curvature k = w’ while
the difference k —A represents the plastic part. Performing an energetic
approach:

W(w)=M,[o] ®)

The equation (8) represents the associate deformation energy when

»
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Figure 2. Constitutive law M vs .
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Figure 3. Strain energy W(w) diagram.

the rotation w value is over a jump [w]. Recalling equation (6), in this
case, we have the total energy functional in the form:

a) A) J. ( A(x)|
+MOZXES” —J.O gxa(x)dx 9)

Here g(x) represents the external dead load and S_the singular
surface inner to the body.

x) +M |k

The expression (9) should be minimized over the boundary
conditions and after this the equilibrium equation follows:

M(x)=1/2[q(1"-%")]-[©(1-x)] (10)

Now I consider &€ and § as some general perturbation over the
equation (9) and P*, P~ and P° parts where the plastic deformation
assume positive, negative and zero values. Developing (9) and omitting
brief calculations I find:

M(x)=M"in p°s M (x)=-M"in P~
-M°<M(x)<M°in P° (11)

The position (11) tells us about the absence of the finite plastic
zone. Vice versa in the elastic general perturbation:

M (x,)=M"sgn([](x,)) (12)

Namely, when the rotation w jump, it takes only one value among
M or — M in fact likewise as a formed plastic hinge.

Bio-membranes elasticity

According to Agrawal and Steigmann [20] cell membranes may be
regarded as two-dimensional solid likewise as liquid crystal. Again a
cell membrane may be regarded as composite materials consisting of
lipid bilayer, membrane cytoskeleton and protein [21], but the elastic
properties of lipid bilayers oblige us to recognize Helfrich paper as
theory point of departure [22]. Here I will be able to focus the attention
on a bi-dimensional model with bending effects but neglecting the
stretching mode. A similarly approach is followed by Steigmann [23]
where wrinkling pattern in stretched sheets has been analyzed, deriving
this from non-linear elasticity theory. In the proposed building model
I will refer about the fundamental consideration on static equilibrium
configuration of a red blood cell. For this I look as the base references
Fung [6], Jenkins [24] and Maleki et al. [25] even if all theirs are not
exhaustive but enough clear on the argument.

From now, I make an opportune framework on physics of cell bio-
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membranes, particularly on the cell boundary. Membranes define the
boundaries of cells among internal and external components. They are
essentially two-dimensional incompressible fluids with a molecular
thickness that imparts bending elasticity. Here become evident obvious
a clear differentiation about the loads conditions over the membrane.
Considering the mechanical pulling case (i.e. ice seed action) and

assuming conjugate variable the thickness. In this case I define as [ the
mechanical stress on the surface S. Vice versa when I consider protein
adsorption case the relevant variable become the fluctuating surface
S, Then it’s possible to join two conjugate thermodynamic variables
respectlvely (to Sand © to S,where © is the surface tension. From
the energy balance:

W(r.5.8,)=w,+7S (13)

The last equation depends hardly from both exact values of y and S,
while w, is the membrane elastic energy or better, the bending energy.
Considering for instance an isolated membrane set (S,0) after some
transformation of (13) I find the notable relation: [26]

F(%S’Sf):G((%Sf))_ﬁ (14)
Achieving the main equation:
=(oF/as, ). (s)

From now I will consider only the energy bending part w, and so I
can extend the thin shell theory over the membrane. Recalling Helfrich
[22] T get the energy form as:

()= (c(p)-c () 4, (P)K () 16

Here, the left term represent the local energy density, C and C°
the mean curvature, p the surface position, (p) the bending stiffness,
k a microscopic parameter and (p) the Gaussian mean curvature.
Neglecting thermal fluctuations I find the total bending energy on the
whole surface.

- [Pl =L e (r)-c () 00

Under the continuum hypothesis, considering the bilayer as an
elastic plate, the membrane stiffness may be considered as directly
proportional to the cube of the thickness. To shorten on the question, I
will set some fundamental consideration such that the following model
may be implemented in a complete and clear way. For this I assume
that in the model is present a neutral surface without stress so, I have
an upper part, of the bilayer, as stretched and the lower parts, in contact
with ice seed, as compressed. Then the total energy functional takes the

form:
=i (o <o oo G (Voo (vior [ 2 (varf | | (18)

In the last formula d represent the membrane thickness, while w*
and w™ the rotation jump. The functional (18) may be minimized under
appropriate boundary condition on the both sides of the contact region.

Discussion

The previous formula (18) appears as the completion of this first
part since in this last equation has been deducted the elastic parts and
the rotations jump parts. All this seem enough coherent with STD
framework but in the future latter part I can develop the minimization
problem thorough a global model containing all the properties showed
in this parts and then eventually in a third part to finalize the numerical
model.
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