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Abstract
The synthesis of indium(III) complex of orotic acid (HOA) was described and the composition and the structure of In(III) complex ware determined by means 
of analytical and spectral analyses. Detailed vibrational analysis of HOA, sodium salt of HOA (NaOA) and In(III)-OA systems based on both the calculated and 
experimental spectra confirmed the suggested metal-ligand binding mode. The calculated vibrational wavenumbers including IR and Raman scattering activities 
for the ligand and its In(III) complex were in good agreement with the experimental data. The vibrational analysis performed for the studied species, orotic acid, 
sodium salt of orotic acid and its In(III) complex, helped to explain the vibrational behaviour of the ligand vibrational modes, sensitive to interaction with In(III). 
The compounds HOA, NaOA and InOA were investigated for possible antioxidant activity in a model of non-enzyme-induced lipid peroxidation on isolated 
rat microsomes. On isolated rat microsomes, administered alone, the compounds didn’t revealed pro-oxidant effects. In conditions of non-enzyme-induced lipid 
peroxidation, only the complex InOA showed antioxidant activity. HOA and NaOA didn’t reveal antioxidant activity. We suggest that the antioxidant activity of the 
complex InOA, might be due to the presence of indium(III) in the structure of InOA.
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Introduction
Coordination compounds of orotic acid and its substituted 

derivatives continue to attract attention because of the multidentate 
functionality of the ligand and its role in bioinorganic and pharmaceutical 
chemistry [1-5]. Orotic acid (2,6-dioxo-1,2,3,6-tetrahydropyrimidine-
4-carboxylic acid, HOA) (Figure 1) is a natural substance classified 
more than 40 years ago as vitamin B13 and mainly used in the past for 
the treatment of pernicious anaemia. Its major metabolic role within 
the human body consists of that it is the first fully formed intermediate 
in the manufacture of the pyrimidine bases required for the RNA/DNA 
synthesis. Metal orotates are also widely applied in medicine [6,7]. 

The structure of sodium salt of orotic acid NaOA is presented in 
(Figure 2). Orotic acid acts as a diacid in aqueous solution [8,9]. The 
coordinated orotate anions exhibit a ligand surface with double or triple 
hydrogen-bonding capabilities, depending on the metal coordination 
mode, and have thus a potential to adopt several modes of interligand 
hydrogen bonding. Orotic acid has demonstrated versatile coordination 
modes during the formation of coordination frameworks, that is why 
it was a challenge for us to obtain new metal coordination complexes 
with orotic acid, especially in view of their application as anticancer 
and antioxidant agents. We have recently synthesized lanthanide(III) 
complexes with a number of biologically active ligands, and we reported 
their significant antioxidant and cytotoxic activity in different human 
cell lines [10-16]. These promising results prompted us to search for 
new metal complexes with orotic acid. Thus, the aim of this work was to 
synthesize and characterize a complex of indium(III) with orotic acid in 
view of determination of  its antioxidant activity. 

Group IIIa metals especially gallium and indium are of major 
current interest as components of medicinal inorganic therapeutic 
and diagnostic agents. It has been shown that not only gallium, but 
also indium and in some cases aluminum salts prevent the growth 

Figure 1. The structure of the ligand orotic acid
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of various experimental solid tumors [17,18]. Gallium is the second 
metal ion, after platinum, to be used in cancer treatment. Its activities 
are numerous and various. It modifies three-dimensional structure 
of DNA and inhibit’s its synthesis, modulates protein synthesis, 
inhibit’s the activity of a number of enzymes, such as ATPases, DNA 
polymerases, ribonucleotide reductase and tyrosine-specific protein 
phosphatase. Gallium alters plasma membrane permeability and 
mitochondrial functions [17,18]. It has been revealed that indium 
curcumin complex, diacetylcurcumin, and indium diacetylcurcumin 
have anticancer activity. New Ga(III) and In(III) compounds with a 
better bioavailability are now under clinical investigations and could 
improve the anticancer and antioxidant activity first demonstrated with 
their inorganic salts [18].

In this paper we report analytical and spectroscopic results 
about the new In(III) complex of orotic acid (HOA). The In(III)-OA 
binding mode was identified and characterized by elemental analysis, 
IR and Raman spectroscopies. For estimation of the most preferred 
reactive sites of HOA for electrophilic attack and metal binding, DFT 
calculations of the vibrational structure of HOA have been performed. 
The compounds HOA, NaOA and InOA have been investigated for 
possible antioxidant activity in a model of non-enzyme-induced lipid 
peroxidation on isolated rat liver microsomes, model of lipid membrane.

Materials and Methods 
Chemistry 

Synthesis of the coordination complex: The compounds used 
for preparing the solutions were Sigma-Aldrich products, p.a. grade: 
In(NO3)3. The sodium salt of orotic acid was used for the preparation 
of the metal complex as a ligand. The complex was synthesized by 
reaction of indium(III) nitrate and the sodium salt of orotic acid 
in aqueous solution, in amounts equal to metal: ligand molar ratio 

of 1: 3. The complex was prepared by adding an aqueous solution of 
indium(III) salt to an aqueous solution of the sodium salt of orotic acid. 
The reaction mixture was stirred with an electromagnetic stirrer at 25 
oC for one hour. At the moment of mixing of the solutions, precipitate 
was obtained. The precipitate was filtered (pH of the filtrate was 5.0), 
washed several times with water and dried in a desiccator to constant 
weight.

The complex was insoluble in water, methanol and ethanol and well 
soluble in DMSO. 

Chemistry device descriptions: The carbon, hydrogen and 
nitrogen contents of the compound were determined by elemental 
analysis. The water content was determined by thermogravimetrical 
analysis.

The solid-state infrared spectra of the ligand and its In (III) complex 
were recorded in KBr in the 4000-400 cm-1 frequency range by FT-IR 
113V Bruker spectrometer. 

The Raman spectra of orotic acid and its new In(III) complex were 
recorded with a Dilor Labram spectrometer (Horiba-Jobin-Yvon, model 
LabRam) using the 784.8 nm excitation line from a near infrared Diode 
laser. The Labram integrated system is coupled trough an Olympus 
LMPlanFL 50x objective to the optical microscope. The spectra were 
collected in the backscattering geometry with a resolution of 2 cm-1. The 
detection of Raman signal was carried out with a Peltier-cooled CCD 
camera. The laser power of 35 mW was used in our measurements.

Computational details: The geometry of orotic acid was optimized 
using the Gaussian 03 program [19]. Becke’s three-parameter exchange 
functional (B3) [20] with Perdew and Wang’s gradient-corrected 
correlation functional (PW91) [21,22] and Becke’s three-parameter 
hybrid exchange functional (B3) [23,24] using the LYP correlational 
functional of Lee, Yang and Parr (LYP) [25,26] were employed in 
the DFT calculations. The 6-311++G** Pople split valence basis sets 
along with the LANL2DZ basis set implemented in the Gaussian 03 
program19 were chosen in the geometry optimization and normal 
modes calculations. 

Using the fully optimized molecular geometry we performed the 
density functional theory (DFT) calculations on harmonic vibrational 
modes for the ligand. Harmonic vibrational wavenumbers including 
IR and Raman intensities were calculated analytically for the fully 
optimized molecular geometry of the ligand. Only real harmonic 
vibrational wavenumbers were obtained for all structures, confirming 
the localization of global minima on the potential energy surfaces.

Pharmacology

In our experiments, KH2PO4, K2HPO4, KCl, (Scharlau Chemie SA, 
Spain), 2-thiobarbituric acid (4,6-dihydroxypyrimidine-2-thiol; TBA), 
Fenol reagent, FeSO4, Ascorbinic acid (Sigma Aldrich), trichloroacetic 
acid (TCA) and Glycerol (Valerus, Bulgaria) were used.

Animals: Male Wistar rats (body weight 200-250 g) were used. The 
rats were housed in plexiglass cages (3 per cage) in a 12/12 light/dark 
cycle, under standard laboratory conditions (ambient temperature 20 
± 2 ºC and humidity 72 ± 4 %) with free access to water and standard 
pelleted rat food 53-3, produced according to ISO 9001:2008.

Animals were purchased from the National Breeding Centre, Sofia, 
Bulgaria. At least 7 days of acclimatization was allowed before the 
commencement of the study. The health was monitored regularly by a 
veterinary physician. The vivarium (certificate of registration of farm 

Figure 2. The structure of sodium salt of orotic acid
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№ 0072/01.08.2007) was inspected by the Bulgarian Drug Agency in 
order to check the husbandry conditions (№ A-11-1081/03.11.2011). 
All performed procedures were approved by the Institutional Animal 
Care Committee and made according Ordinance № 15/2006 for 
humaneness behaviour to experimental animals. The principles stated 
in the European Convention for the Protection of Vertebrate Animals 
used for Experiments and other Scientific Purposes (ETS 123) (Council 
of Europe, 1991) were strictly followed throughout the experiment.  

Isolation of liver microsomes: Liver is perfused with 1.15 % KCl 
and homogenized with four volumes of ice-cold 0.1 M potassium 
phosphate buffer, pH=7,4. The liver homogenate was centrifuged 
at 9 000 x g for 30 min at 4°C and the resulting post-mitochondrial 
fraction (S9) was centrifuged again at 105 000 x g for 60 min at 4°C. The 
microsomal pellets were re-suspended in 0.1 M potassium phosphate 
buffer, pH=7.4, containing 20 % Glycerol. Aliquots of liver microsomes 
were stored at -70°C until use [27].

The content of microsomal protein was determined according to 
the method of Lowry using bovine serum albumin as a standard [28].

FeSO4/Ascorbic acid-induced lipid peroxidation in vitro: As 
a system, in which metabolic activation may not be required in the 
production of lipid peroxide, 20 µM FeSO4 and 500 µM Ascorbic acid 
were added directly into rat liver microsomes and incubated for 20 min 
at 37 °C [29].

Microsomes’ incubation with HOA, NaOA and InOA: Liver 
microsomes were incubated with concentration 100 μM of the 
investigated compounds [30].

Lipid peroxidation in microsomes: After incubation of microsomes 
(1 mg/ml) with the compounds, we added to the microsomes 1 ml 25 % 
(w/v) trichloroacetic acid (TCA) and 1 ml 0.67 % 2-Thiobarbituric acid 
(TBA). The mixture was heated at 100 °C for 20 min. The absorbance 
was measured at 535 nm, and the amount of MDA was calculated using 
a molar extinction coefficient of 1.56 x 105 M-1cm-1 [29].

Statistical analysis: Statistical analysis was performed using 
statistical programme ‘MEDCALC’. Results are expressed as mean 
± SEM for 5 experiments. The significance of the data was assessed 
using the nonparametric Mann-Whitney test. A level of P < 0.05 was 
considered significant. Three parallel samples were used. 

Results and Discussion
Chemistry

The new complex was characterized by elemental analysis. The 
content of the metal ion was determined after mineralization. The water 
content in the complex was determined thermogravimetrically. IR and 
Raman spectra confirmed the nature of the complex.

The data of the elemental analysis of the new indium(III) complex 
obtained serving as a basis for the determination of its empirical 
formula are presented below.

Elemental analysis of In(III) complex of orotic acid: (% calculated/
found): In(OA)3.4H2O: C: 25.57/25.47; H: 2.41/2.24; N: 11.93/11.79; 
H2O: 10.23/10.25; In: 23.72/24.06, where HOA = C5N2O4H4 and OA- = 
C5N2O4H3

-.

The mode of bonding of the ligand to In(III) ions was elucidated by 
recording the IR and Raman spectra of the complex as compared with 
those of the free ligand and the theoretical predictions. The vibrational 
fundamentals from the IR and Raman spectra were analysed by 

comparing these modes with those from the literature [31-35] in 
combination with the results of our DFT calculations (i.e., harmonic 
vibrational wavenumbers and their Raman scattering activities) for the 
ligand [34] and for the In(III) complex.

Vibrational spectroscopy

In (Table 1) the selected calculated and experimental IR and Raman 
data together with their tentative assignments are given. The vibrational 
IR and Raman spectra of HOA, sodium salt of orotic acid NaOA and 
In(III)–OA are presented in (Figures 3) and (Figures 4). Significant 
differences in the IR and Raman spectra of the complex were observed 
as compared to the spectra of the ligand and confirmed the suggested 
metal-ligand binding mode. The vibrational fundamentals from the 
IR and Raman spectra were analysed by comparing these modes with 
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Figure 3. IR spectra of orotic acid (HOA), sodium salt of orotic acid (NaOA) and its In(III) 
complex (400-2000 cm-1)

 
500 1000 

Wavenumber/cm-1 
1500 

InOA 

NaOA 

HOA 

Ra
m

an
 In

ten
sit

y 

Figure 4. Raman spectra of the solid state of orotic acid (HOA), sodium salt of orotic acid 
(NaOA) and its In(III) complex. Excitation: 784.8 nm, 35 mW
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Frequency
scaled

Experimental Raman
HOA         InOA

Experimental IR
HOA          InOA Assignments

253 306 ν(O1-In)
269 ν(O1’-In), ν(O3’-In)
337 345 ν(C6-C7) 

380 395 383
ν(O1’-In),  ν(C7’-In), ν(O3’-In),  δ(C5’-C4’-O4’),  δ(N3’-C2’-O2’), δ(N1’-
C2’-O2’),  δ(N3’-C4’-O4’)

409 δ(C5-C4-O4), γ(O5-H6), δ(C2-N3-C4), δ(N1-C2-O2)  
434 440 473 ν(O1’-In), ν(O3’-In), ν(C7’-In)
464 460 470 451 δ(C6-C7-O1), ν(O1-In), δ(C7-O1-In), δ(N1-C2-O2)
480 γ(O5-H6), γ(H1-O5)
506 513 520 507 517 γ(C7-O1), γ(N1-C6), γ(C6-C7)  
510 γ(C6’-C7’), δ(N1’-C6’-C5’)  

529 δ(C5’-C4’-N3’), δ(N3’-C4’-O4’), δ(C6’-C5’-C4’),  δ(C2’-N1’-C6’) δ(N3’-
C2’-O2’), δ(N1’-C2’-N3’), δ(C2’-N3’-H3’)

533 546 553 555 538 γ(HI-O5), δ(N3-C4-O4), δ(C6-C5-C4), δ(C5-C4-N3), δ(C2-N1-C6)
579 δ(C2-N3-C4), γ(C4-N3), δ(N1-C2-N3) 
582 δ(C2’-N3’-C4’), γ(C4’-N3’)
596 608 602 603 595 ν(In-O5)
615 γ(N1’-H1’)
659 δ(N3-C2-N1), γ(N3-H3), γ(H1-N1)
691 653 646 633 γ(N3’-H3’), γ(N1’-H1’)
696 γ(N3-H3), δ(N1-C2-N2), γ(N1-H1)
758 γ(O2-C2), γ(H5-C5)
765 753 744 758 γ(C2’O), γ(C2’N) 
769 γ(C2-O2), γ(C2N) 
782 δ(C7O2), ν(O1-In)
795 792 786 786 743 δ(C7’O2), ν(C7’-In)
800 γ(O1-In), w(CO2), γ(C-H, N-H)
810 w(CO2), γ(C-H)
885 887 893 892 γ(C5’-H5’), γ(C5’-C4’), γ(C6’-C5’), γ(C4’-N3’)
891 γ(C5-H5)
930 933 949 930 911 ν(C6’-C7’)
931 ν(C6-C7), δ(C2-N3-C4)
973 1011 1016 1015 1027 δ(C2-N3-H3), δ(C2-N3-H3), δ(C6-C5-H5), δ(C2-N1-C6)
992 1047 1047 1042 δ(C6’-C5’-C4’), δ(N1’-C6’-C5’), ν(C6’-C7’), δ(C2’-N1’-C6’)
1071 1114 δ(C4’-C5’-H5’), δ(C6’-C5’-H5’)
1075 1134 1145 1125 1137 δ(C6-C5-H5), δ(C4-C5-H5)
1165 1205 ν(C4-N3)
1169 1254 1241 1241 ν(C4’-N3’)
1247 1282 1300 1284 1258 δ(N1’-H1’), δ(C5’-H5’)
1281 1326 1319 1345 1320 δ(N1-H1), δ(C5-H5)
1383 1414 1380 1407 1401 νs(C7’O2),ν(C6’-C7’)
1464 1522 1479 1522 1460 ν(N1’-C6’),   ν(C7’-O3’), ν(C6’-C7’)
1512 νas(C7’-O2)
1612 1615 1622 1617 1631 ν(C6-C5)
1623 ν(C6’-C5’)
1721 1657 1671 1684 1698 ν(C4-O4)
1725 ν(C4’-O4’)
1727 1748 ν(C7-O3)
1736 1715 1714 1712 ν(C2-O2)
1766 ν(C2’-O2’)
3138 ν(C5’-H5’)
3354 3520 3437 ν(N1-H1), ν(H1-O5)
3642 3144 3232 3199 ν(O5-H6)

Table 1. Selected theoretical and experimental IR and Raman wavenumbers (cm-1) of orotic acid (HOA) and its In(III) complex (InOA) and their tentative assignment
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those from the literature34 in combination with the results of our DFT 
calculations (i.e., harmonic vibrational wavenumbers and their Raman 
scattering activities). 

In the 3600-2000 cm-1 spectral region from the IR spectrum the 
O-H and N-H stretches give rise to medium IR bands (Figure 3). The 
O-H and N-H bands appear overlapped in the same spectral region, 
and the involvement of these groups in hydrogen bonds affects their 
wavenumbers and produces a relevant band broadening [32-35]. In the 
IR spectrum of orotic acid the medium band at 3520 cm-1 was assigned 
to the N-H stretching modes, while the shoulder at 3232 cm-1 was 
attributed to the O-H stretching modes (Table 1). The wavenumber 
region 2700-2500 cm-1 in the IR spectra of orotic acid and its complex 
is typical of strongly hydrogen bonded intermolecular complexes with 
overtones and combinations of lower frequency modes of the bonded 
molecules [36-43].

When the carbonyl is hydrogen bonded but not dimerized, a bond 
active in both IR and Raman spectra appears at 1730-1705 cm-1. In 
our IR spectra, one very strong band can be observed in this region 
(at 1712 cm-1 for orotic acid), which was assigned to the symmetrical 
stretching mode of C2=O2 and to the N-H stretching mode. In this 
region were observed one medium band at 1715 cm-1 in the Raman 
spectrum of the free ligand, and two shoulders in the Raman spectrum 
of the complex (Figure 3) [36-40]. The very strong bands at 1684 cm-1 
were assigned to the symmetrical stretching modes of C4=O4 and to 
the C6=C5 stretching modes. In the Raman spectra, these vibrations 
can be observed as very strong bands at 1657 and 1671cm-1 for orotic 
acid and its In(III) complex, respectively. 

The asymmetrical COO- stretching mode was observed as a 
medium band at 1522 cm-1 (in the IR spectrum of orotic acid) and as 
a shifted shoulder (in the IR spectra of the complex). The symmetrical 
COO- stretching mode was observed in the IR spectra at 1407 and 1401 
cm-1 for the ligand and its In(III) complex, respectively, while in the 
Raman spectra this vibration appears as a strong peak at 1414 cm-1 for 
the free ligand and as a medium band for the complex at 1380 cm-1 
(Figure 4). In the 1800-900 cm-1 spectral region of the IR spectra, the 
bands at 1345 and 1320 cm-1 for the free ligand and its complex (Figure 
3) can be due to the stretching modes of N-H. These vibrations are 
rather different and shifted in the Raman spectra for the free ligand and 
for the complex.

The C5-H5, N1-H1, and C-O-H bending modes are present 
in the IR spectra as well as in the Raman spectra. In the IR spectra 
they are observed at 1284 cm-1 for the free ligand, while in the Raman 
spectra they are detected at 1282 cm-1. The weak peak at 1241 cm-1 that 
appear only in the IR spectrum of the free ligand, was assigned to the 
stretching modes of C2-N3-C4 and C6=C5-C4, while in the Raman 
spectra these vibrations appear also for the complex. The bands around 
1015 cm-1, weak in IR and medium in Raman spectra, can be due to 
the symmetrical C=O stretching mode, whereas bands around 930 cm-1 
almost weak in IR and medium in Raman spectra, were attributed to 
the symmetrical C(ring)-C(carboxyl) bridge bond stretching mode. 
The uracilate ring bending vibration and the skeletal deformation 
bands of the free orotic acid, mainly in the 900-300 cm-1 wavenumber 
region, show considerable changes on complex formation (Figures 3) 
(Figure 4) (Table 1). These changes may be attributed to distorsion of 
the uracilate rings upon coordination.

The new bands at 440-470 cm-1 in the IR and Raman spectra, 
which appear only for the In(III) complex, can be due to the indium-
oxygen interactions [35]. In the low wavenumbers region of the Raman 

spectrum of orotic acid (Figure 4), the medium strong band at 395 
cm-1 is importantly shifted to the shorter wavenumbers in the Raman 
spectrum of the In(III) complex and became weaker. This one and the 
new neighbouring band at 345 cm-1 (in the Raman spectrum of the 
complex) can be due to the indium-oxygen vibration modes [44-48]. 
The metal affects the carboxylate anion as well as the ring structure. 
The ionic potential of the metal is the most important parameter 
responsible for the influence of the metal on the rest of the molecule 
[49-51]. The carboxylic acids interact with the metals as symmetric 
[52,53], bidentate carboxylate anions and both oxygen atoms of the 
carboxylate are symmetrically bonded to the metal [54]. In this sense, 
we can observe in the Raman spectra of the In(III) complex a very weak 
peak at 306 cm-1, which can be due to the O-In-O vibration modes 
(Table 1) [48,55-57].

From our previous results regarding the newly synthesised 
lanthanide complexes and this work, it is clear that the nature of 
orotic acid makes its various anionic forms versatile ligands for use 
with a variety of metals and for a variety of objectives/advantages, 
including variable coordination modes. Thus, the ligand orotic acid 
has great potential as a generally useful polyfunctional ligand in metal 
coordination chemistry and it will prove attractive to a variety of 
coordination chemists.

On the basis of the detailed vibrational analysis the most probable 
structure of the obtained In(III) complex was suggested (Figure 5).

Pharmacology

Effects of HOA, NaOA and InOA on isolated rat liver microsomes: 
One of the most suitable sub-cellular in vitro systems for investigation 
of drug metabolism is isolated microsomes.

Administered alone, HOA, NaOA and InOA, didn’t reveal 
statistically significant toxic effects on isolated rat microsomes. The 
level of malondialdehyde (MDA), marker for lipid peroxidation, was 
not increased statistically significant from all compounds, compared to 
the control (non-treated microsomes) (Figure 6). 

In conditions of non-enzyme-induced lipid peroxidation, only the 
complex InOA revealed statistically significant antioxidant activity, 
compared to toxic agent – Fe2+/AA (iron/ascorbate). HOA and NaOA 
didn’t show antioxidant activity at this toxicity model (Figure 7).

Microsomes incubation with Fe2+/AA, resulted in statistically 
significant increase of the amount of MDA with 191 % vs control (non-
treated microsomes). In non-enzyme-induced lipid peroxidation model, 
the pre-teratement only with the complex InOA, at concentration 100 
μM, significantly reduced lipid damage by 64 %, as compared to the 

Figure 5. The suggested structure of In(III) complex of orotic acid
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toxic agent (Fe2+/AA). HOA and NaOA didn’t show antioxidant activity 
in this toxicity model (Figure 7).

The microsomal fraction, which is prepared by differential 
centrifugation, contents fragments from the endoplasmatic reticulum 
and preserve the enzyme activity, mostly cytochrome P450 enzymes. 
Microsomes are used as a model of lipid membrane in experiments, 
related to the process of lipid peroxidation [58]. Here, we show that only 
the complex InOA revealed statistically significant antioxidant effect in 
non-enzyme-induced lipid peroxidation in isolated microsomes. The 
effects of InOA might be due to the presence of metal ions.

Conclusion
The complex of indium(III) with orotic acid has been synthesized 

and characterized by elemental and vibrational (IR, Raman) analyses. 
The vibrational analysis performed for the studied species, orotic acid 
and its In(III) complex, helped to explain the vibrational behaviour of 
the ligand vibrational modes, sensitive to interaction with In(III). The 
most probable metal-ligand binding mode in the In(III) complex of 
orotic acid was elucidated. It is suggested that orotic acid binds through 
the oxygen atoms of the carboxylic groups from the ligands. 

The results from the preliminary pharmacological investigations of 
orotic acid, sodium salt of orotic acid and In(III) complex demonstrate 
the antioxidant potential of the In(III) complex which is in line with our 
preceding papers concerning the activity of lanthanide coordination 
compounds with various biologically active ligands. The complex 
formation proved to be beneficial for the exerted efficacy of the In(III) 
complex vs. the corresponding ligand and its sodium salt. Thus, the 

newly synthesised In(III) complex necessitates further more detailed 
pharmacological evaluation.
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Figure 6. Effects of HOA, NaOA and InOA (at concentration 100 μM), administered alone, 
on isolated rat microsomes
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