Lorenz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted 'tubular' polar areas of magnetic fields and hassium nanoparticles

Alireza Heidari1,*, Katrina Schmitt1, Maria Henderson1 and Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604; American International Standards Institute, Irvine, CA 3800, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Key words: hassium nanoparticles, scanning electron microscope (sem), 3d finite element method (fem), heat transfer equation, optothermal, heat distribution, thermoplasmonic, hassium nanorods, human cancer cells, tissues and tumors treatment, simulation, synchrotron radiation, emission, function, beam energy

Received: February 25, 2020; Accepted: March 10, 2020; Published: March 13, 2020

Abstract

In the current study, thermoplasmonic characteristics of Hassium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Hassium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Hassium nanoparticles by solving heat equation. The obtained results show that Hassium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.
Introduction

In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9, 10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converge to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26, 27]. Regarding the simplicity of ligands connection to Hassium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Hassium nanoparticles are investigated.

Heat generation in synchrotron radiation emission as a function of the beam energy-hassium nanoparticles interaction

When Hassium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75-123].

Hassium nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124-202].

Simulation

To calculate the generated heat in Hassium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Hassium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Hassium is dependent on particle size [284-474].

Firstly, calculations were made for Hassium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanoparticles in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanoparticles in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 (nm) nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Hassium.

In this section, core-shell structure of Hassium and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Hassium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding environment.
aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Hassium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Figure 2. Variations of absorption to extinction ratio and scattering to extinction ratio for Hassium nanospheres with various radiuses

Figure 3. Maximum increase in temperature for spherical nanoparticles with radius of 45 (nm) at Plasmon wavelength of 685 (nm)

Figure 4. Maximum increase in temperature for core–shell Hassium nanospheres with various thicknesses of silica shell

Figure 5. Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm)

Figure 6. Extinction cross section area for Hassium nanorods with effective radius of 45 (nm) and various dimension ratios
Conclusion and summary

The calculations showed that in Hassium nanoparticles, light absorption in Plasmon frequency causes increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Hassium nanospheres increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostucture is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT12010093734735. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown and Michael N. Cocchi for constructing graphical abstract figures. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS-II) under the merit-based proposal scheme.

References

Heidari A (2020) Lorenz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted ‘tubular’ polar areas of magnetic fields and hassium nanoparticles


Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors" Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed. 7: 2, 2016.


A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage”, Struct Chem Crystallogr Commun 2: 1, 2016.


A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (RhO 3 Nerves as Anti-Cancer Drugs for Cancer Cells’ Treatment ”, Chem Open Access 5: e129, 2016.


Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicol 1: 2, 2016.


Molecular Dynamics and Monte–Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL-Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycolobiological Study”, J Glycobiol 5: e111, 2016.


Phase, Composition and Morphology Study and Analysis of Os/Pd/Hf Nanocomposites”, Nano Res Appl. 2: 1, 2016.


Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulb Tumor Multiple Organs or Tissues”, Arch Can Res. 4: 2, 2016.


Linear and Non-Linear Quantitative Structure–Anticancer–Activity Relationship (QSACAR) Study of Hydrox Ruthenium (IV) Oxide (Ro4) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integr Oncol 5: e110, 2016.


DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives”, Biomedical Data Mining 5: e100, 2016.

A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–
Heidari A (2020) Lorenz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted 'tubular' polar areas of magnetic fields and hassium nanoparticles.
Heidari A (2020) Lorentz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted ‘subar’ polar areas of magnetic fields and nanohemispheres.


294. Heidari, “Curious Chloride (CmCl) and Titanic Chloride (TICl)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics”, J. Cancer Research and Therapeutic Interventions, Volume 1, Issue 1, Pages 01–10, 2018.


297. Heidari, “Two–Dimensional (2D) 1H or Proton NMR, 13C NMR, 2D NMR and 3P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Glob Imaging Insights, Volume 3 (6): 1–8, 2018.

Heidari A (2020) Lorenz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted ‘tubular’ polar areas of magnetic fields and hassium nanoparticles


Heidari A (2020) Lorenz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted 'tubular' polar areas of magnetic fields and hassium nanoparticles

Heidari A (2020) Lorenz gauge, electric and magnetic fields study of interaction of gravitationally accelerating ions through the super contorted 'tubular' polar areas of magnetic fields and hassium nanoparticles


Copyright: ©2020 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.