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Abstract
ALK-positive Non-Small-Cell Lung Cancer (NSCLC) is a defined subgroup of lung cancer. Crizotinib was the first ALK-inhibitor introduced in clinical practice 
after two phase III trials demonstrated its superiority over chemotherapy both in second and in first line of treatment. Approximately within ten months patients 
developed acquired resistance to crizotinib and relapse. Second and third generation ALK-inhibitors are more potent molecules designed to overcome crizotinib 
resistance. Ceritinib, alectinib and brigatinib are approved by FDA as subsequent therapy in patients who have progressed after crizotinib. Lorlatinib and entrectinib 
are in different phases of clinical development. Moreover some of these agents are compared to crizotinib in first line setting to evaluate if an upfront more potent 
inhibitor could control disease longer than a sequential strategy. Despite the efficacy of second-generation ALK inhibitors, patients relapse. Each ALK-inhibitor is 
characterized by a distinct resistence profile with important clinical consequences in the choice of subsequent therapy. 
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Introduction
Unselected patients with metastatic Non-Small-Cell Lung Cancer 

(NSCLC) treated with conventional chemotherapy present a median 
survival of 10-12 months. According to the oncogene-addiction 
paradigm, the inhibition of molecular drivers by target agents could 
reduce tumor burden and improve patient survival [1,2]. Oncogenic 
ALK gene rearrangements are one of the several molecular alterations 
described in NSCLC especially in adenocarcinoma. Other molecular 
drivers are sensitizing EGFR gene mutations, ROS1 gene rearrangements, 
BRAF V600E target mutations. Emerging biomarkers, for which 
targeted agents are under investgation, include HER-2 mutations, RET 
gene rearrangements, high-level MET amplification or MET exon 14 
skipping mutations (METex14) [3]. ALK is an insulin receptor tyrosine 
kinase with unclear physiologic functions. In humans, ALK expression 
is limited to the adult brain, no expression has been evidenced in normal 
lung tissue [4]. ALK gene rearrangements, occurring approximately 
in 4% of lung adenocarcinoma, define a distinct molecular subtype 
of NSCLC. The diagnosis of this gene alteration, although rare, offers 
patients the opportunity to receive highly effective target therapy [5]. 
Chromosomal rearrangements involving ALK gene were described in 
Non-small cell lung cancer (NSCLC), anaplastic large cell lymphoma 
(ALCL), and inflammatory myofibroblastic tumor (IMT). These 
rearrangements lead to the expression of ALK fusion genes in which 
the fusion partner mediates ligand-dependent oligomerization of ALK, 
resulting in constitutive ALK kinase activation [6-18]. In NSCLC the 
major fusion partner is echinoderm-microtubule-associated protein-
like 4 (EML4), with the formation of the EML-ALK fusion protein. 
More than other 20 ALK fusion partners have been identified in lung 
cancer but the clinical significance of these fusion protein requires 
further investigations [7]. ALK rearrangements are mostly found in 
non-squamous lung histology, never- or light smokers and in younger 
patients. These clinical-pathologic features should not be utilized in 
selecting patients for testing [3]. Therefore ALK testing is recommended 
for patients with adenocarcinoma, for lung cancer of mix histology with 
an adenocarcinoma component, for limited specimens such as biopsy 

and cytology specimens where adenocarcinoma component cannot 
be completely excluded and for never-smokers who are younger than 
50 years and have tumor of squamous histology [3,5-8]. ALK IHC 
assays are validated, standardized and cost-effective screening method 
to detect ALK rearrangement to select ALK-positive NSCLC . FISH 
can be use to confirm ALK positivity detected by an IHC assay. A 
practical cutoff value of 15% has been established to discriminate ALK-
rearranged and ALK wild type NSCLCs [3,9-11]. 

Crizotinib
Crizotinib, a selected, first generation tyrosine kinase inhibitor 

(TKI) of ALK, ROS1 and MET, was the first ALK inhibitor introduced 
into clinical practice. The first phase I clinical trial of crizotinib 
(PROFILE 1001) was initially designed to test the activity of crizotinib 
in patients with MET deregulation (MET amplification or MET 
mutation). A significant tumor shrinkage was observed in patients 
with MET-amplification and in patients with NSCLC harboring ALK 
rearrangement. So the protocol was amended to screen simultaneously 
patients for both ALK translocation and MET amplification. In ALK-
positive NSCLC updated results showed a response rate (RR) of more 
than 60%, a median progression free survival (PFS) of 9 months [9,12]. 
Similar findings have been observed in the phase II study PROFILE 1005 
[13]. Two phase III studies highlighted the advantage of crizotinib over 
standard chemotherapy [14,15]. In the PROFILE 1007 study, second-
line crizotinib was compared to standard chemotherapy (pemetrexed 
or docetaxel) in patients with advanced ALK-positive NSCLC 
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of several molecules some of which involved in tumor growth. 
ALK fusion proteins are Hsp 90 clients and Hsp90 inhibitors have 
shown activity against EML4-ALK in clinical and preclinical studies 
suggesting their use in crizotinib-resistance ALK-positive NSCLC 
[17,22-24]. Preclinical studies highlight that Epithelial-Mesenchymal 
Transition (EMT), which enhances cell motility and invasiveness [25], 
is associated with crizotinib resistance [26-28]. Transformation to 
Small-Cell Lung Cancer (SCLC) is a mechanism of target-independent 
acquired resistance in EGFR-mutation-positive NSCLC which is also 
rarely described in ALK-rearranged lung cancer [29-31]. Presumably 
in patients experiencing slow progression, in limited pre-existing 
sites, or in a single new site without worsening of clinical status, the 
main mechanism of resistance is ALK-dominant. In this condition 
the discontinuation of ALK inhibition is associated with the risk of 
disease flare [32,33]. Continuation of crizotinib beyond progression in 
association with local therapies (radiotherapy, local ablation or surgery 
against only the sites of disease progression) may extend disease control 
by more than 6 months [34]. In 120 patients enrolled in PROFILE 
1001 and 1005 who continued crizotinib for >3 weeks post-RECIST 
progression, the median duration of crizotinib treatment beyond 
progression was 19.4 weeks and median OS from the time of first 
progression was significantly longer for patients continuing crizotinib 
compared with patients who stopped [35]. Patients selection is essential 
because subjects who benefited from continuing crizotinib have a good 
performance status, had achieved an objective response to crizotinib, 
and had a site of progressive disease that was manageable with local 
therapy [36]. Patients undergoing rapid radiological progression and 
impairing in clinical conditions have become completely refractory to 
crizotinib or addicted to another driver. Crizotinib should therefore 
be replaced by conventional chemotherapy or a next generation ALK 
inhibitor [35]. Primary resistance is the lack of response to ALK-
inhibitors. Mechanisms underling primary resistance are not clearly 
defined [2].

Second generation ALK inhibitors
Second- and third-generation ALK-inhibitors, developed to 

overcome acquired crizotinib resistance, have been investigated in 
clinical trials both in crizotinib-refractory and in crizotinib-naïve 
settings. 

Ceritinib
Ceritinib (LDK378) is a second generation ALK and ROS1 

inhibitor [37]. ASCEND-1 is a phase I study aimed to assess activity 
of ceritinib in both ALK inhibitor-pretreated and ALK inhibitor-

progressing after one prior platinum-based chemotherapy. Crizotinib 
was associated with a RR of 65% and a median PFS of 7.7 months while 
chemotherapy showed a RR of 20% and a median PFS of 3.0 months 
[14]. The PROFILE 1014 trial demonstrated improvement in PFS of 
crizotinib over standard platinum-based chemotherapy in first-line 
advanced non-squamous ALK-positive NSCLC. In the crizotinib group 
median PFS was 10.9 months, RR was 74%, in chemotherapy arm PFS 
was 7.0 and RR was 45% [15]. In both studies the improvement in PFS 
did not translated into an advantage in overall survival (OS) because 
of confounding effect of cross-over. Based on these data crizotinib was 
approved both as first-line and as subsequent therapy in patients with 
ALK-positive NSCLC [3].

Resistance to crizotinib
After a median time of 10 months, patients become refractory to 

crizotinib and relapse on therapy [2,3,5-17]. A deeper understanding 
of molecular processes of acquired crizotinib resistance results from 
analysis of post-progression biopsy specimens. Central nervous system 
(CNS) is the first site of progression in approximately 50% of patients, 
suggesting inadequate penetration into the CNS by crizotinib [18-20]. 
Mechanisms responsible of acquired resistance are target-dependent 
(50%), non target-dependent (30%) and unknown (20%) (Figure 1). The 
main mechanisms of acquired resistance are: genetic alteration of the 
drug-target (point mutation and/or gene amplification) and activation 
of bypass signaling with the activation of a parallel pathway obviating 
the need for the drug [17]. Target-dependent mechanisms preserve 
the domain of ALK signaling and can occur through mutations in the 
kinase domain. The most common ALK resistance mutations were 
the gatekeeper L1196M substitution (which is analogous to T790M in 
epidermal growth factor receptor) [17] and G1269A. These alterations 
were present in only 7% and 4% of all of the crizotinib-resistant 
specimens, respectively. The remaining ALK resistance mutations 
included: C1156Y (2%), G1202R (2%), I1171T (2%), S1206Y (2%), 
and E1210K (2%) [2,16] (Figure 2). Another mechanism of acquired 
resistance to crizotinib is an increase or amplification of the number of 
rearranged echinoderm microtubule-associated protein-like 4 (EML)-
ALK genes. Therefore not all EML-ALK fusion proteins are inhibited by 
clinically achievable doses of crizotinib [2,17]. Non target dependent 
acquired resistance involved the activation of a parallel or bypass 
signaling pathways obviating the need for the original drug. Epidermal 
growth factor receptor (EGFR) activation, KIT amplification, KRAS 
mutations may mediate acquired crizotinib resistance [17] although 
their role is unclear [17]. ALK-rearranged-NSCLC treated with 
crizotinib might develop KRAS and EGFR mutated ALK-negative 
tumors [21]. Heat shock protein 90 (Hsp90) is a chaperone protein 
assisting other proteins in proper folding, stability and function 

Figure 1. Mechanisms underlying acquired resistance to crizotinib [2]

Figure 2. Target-dependent acquired resistance to crizotinib [2]
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naive patients with ALK-rearranged NSCLC. An overall response 
was reported in 72% of 83 ALK inhibitor-naive patients and in 56% 
of 163 ALK inhibitor-pretreated patients. Median duration of response 
was 17.0 months in ALK inhibitor-naive patients and 8.3 months in 
ALK inhibitor-pretreated patients. Median progression-free survival 
was 18.4 months in ALK inhibitor-naive patients and 6.9 months in 
ALK inhibitor-pretreated patients [38]. Based on this study, ceritinib 
was approved by FDA in ALK-positive NSCLC who have progressed 
on crizotinib [3,38]. ASCEND-2 is a phase II study evaluated efficacy 
and safety of ceritinib in ALK-positive NSCLC previously treated with 
chemotherapy and crizotinib. Patients should have received cytotoxic 
therapy (1–3 lines, including 1 platinum doublet) and progressed on 
crizotinib as the last treatment prior to study entry. The overall response 
rate (ORR) by investigators was 38.6% (35.7% by blinded independent 
review committee), with a PFS of 5.7 months [39]. ASCEND-3 is a 
single arm phase II study of ceritinib in ALK-inhibitor naive patients 
in ALK-positive NSCLC. 98.4% of patients had received at least 1 
line of prior chemotherapy and 25% of patients had received ≥3 prior 
antineoplastic regimens. Whole-body ORR of 63.7% (by blinded 
independent review committee of 58.9%), median PFS was 11.1 months 
with a median follow-up of 8.3 months [40].ASCEND-4 is phase 3 
study in untreated patients with stage IIIB/IV ALK-rearranged non-
squamous NSCLC randomized to receive ceritinib or platinum-based 
chemotherapy. Median progression-free survival (assessed by blinded 
independent review committee) was 16.6 months in the ceritinib group 
and 8.1 months in the chemotherapy group [41]. Based on this phase III 
trial FDA approved ceritinib as first-line therapy for patient with ALK-
positive metastatic NSCLC [3]. ASCEND-5 is a phase III trial aimed to 
assess efficacy and safety of ceritinib versus single-agent chemotherapy 
(pemetrexed or docetaxel) in patients with advanced ALK-rearranged 
NSCLC who had previously progressed following crizotinib and 
platinum-based doublet chemotherapy. Patients treated with ceritinib 
showed a significant improvement in median progression-free survival 
compared with chemotherapy (5.4 months for ceritinib vs 1.6 months 
for chemotherapy [42].

Alectinib
Alectinib (CH5424802/RO5424802) is an oral TKI inhibitor of ALK 

and RET rearrangements which is now recommended as the preferred 
first-line therapy in patients with previously untreated advanced ALK-
positive NSCLC based on results of ALEX and J-ALEX trial [3]. ALEX 
trial is a randomized, open-label, phase 3 trial comparing alectinib with 
crizotinib in patients with previously untreated, advanced ALK-positive 
NSCLC, including those with asymptomatic brain or leptomeningeal 
metastases. Investigator assessed progression-free survival was 68.4% 
with alectinib and 48.7% with crizotinib. The median progression-
free survival with alectinib was not reached as compared with 11.1 
months with crizotinib. Independent review committee–assessed 
progression-free survival was also significantly longer with alectinib 
than with crizotinib (median progression free survival was 25.7 months 
and 10.4 months respectively). The time to CNS progression was 
significantly longer with alectinib than with crizotinib in the intention-
to-treat population: 12% in the alectinib group had an event of CNS 
progression, as compared with 45% in the crizotinib group. Median 
duration of response was not estimable with alectinib and 11.1 months 
with crizotinb. Among patients with measurable CNS lesions CNS 
response rate was 81% in alectinib group and 50% in crizotinib group. 
The median duration of intracranial response was 17.3 months for 
alectinib and 5.5 months for crizotinib. The 12-month survival rate was 
84.3% with alectinib and 82.5% with crizotinib. Overall survival data 

are currently immature. Alectinib demonstrated an intersting safety 
profile: despite the longer duration of treatment with alectinib (median 
17.9 months vs 10.7 months with crizotinib), grade 3 to 5 adverse 
events occurred in 41% of the patients treated with alectinib and 50% 
of the patients treated with crizotinib [43]. The results of this trial are 
supported by those of the J-ALEX trial involving Japanese patients 
with ALK-positive previously untreated advanced NSCLC. Median 
PFS had not yet been reached with alectinib versus 10.2 months with 
crizotinib. Grade 3 or 4 adverse events were less frequent with alectinib 
when compared with crizotinib [44]. Alectinib is also approved by FDA 
for ALK-positive NSCLC who have progressed on are intolerant to 
crizotinib [45]. Shaw et al. evaluated alectinib in 87 patients with ALK-
positive crizotinib-resistant NSCLC. ORR was 48%, median Duration 
Of Response (DOR) was 13.5 months [46]. In 138 patients who have 
progressed on crizotinib Ou et al. demonstrated a response rate of 50% 
and a median duration of response of 11.2 months [47]. In both trials 
alectinib showed an impressive activity in control of central nervous 
system (CNS) disease and a good safety profile with most adverse 
events of grade 1 or 2 [46,47]. 

Brigatinib 
Brigatinib (AP26113) is a potent and selective second generation 

ALK and ROS1 inhibitor designed to overcome first generation crizotinib 
resistance. In preclinical models it showed activity against mutant form 
of EGFR [35]. Brigatinib displays superior in vitro and in vivo potency 
in NSCLC models compared with crizotinib: in ALK-positive cell lines 
and in xenograft mouse models brigatinib inhibited native ALK with 
12-fold greater potency than crizotinib. Several secondary mutations 
at 11 different amino acid residues in ALK-sequence (G1123, T1151, 
L1152, C1156, I1171, F1174, L1196, G1202, D1203, S1206, and G1269), 
have been associated with clinical resistance to crizotinib and/or the 
second-generation ALK inhibitors ceritinib and alectinib. Brigatinib is 
a more potent inhibitor of native EML4-ALK than crizotinib, ceritinib, 
and alectinib and exhibits substantial activity against all secondary ALK 
mutations at clinically achievable concentrations. In vivo Brigatinib 
demonstrates antitumor activity against L1196M, the most common 
mutation associated with resistance to crizotinib, and G1202R which is 
associated with clinical resistance to crizotinib, ceritinib, and alectinib 
[48]. In April 2017, based on the results from ALTA trial, brigatinib 
received accelerated approval for the treatment of patients with ALK-
positive metastatic NSCLC who have progressed on or are intolerant 
to crizotinib [3]. ALTA is a prospective, open-label, randomized, phase 
II trial assessing brigatinib efficacy and safety at 90 mg once daily (arm 
A) and 180 mg once daily with a 7-day lead-in at 90 mg (arm B) in 
222 patients with crizotinib-refractory advanced ALK-positive NSCLC. 
Objective response rate (ORR) was 45% in arm A and 54% in arm B. 
In patients with measurable brain metastases the intracranical overall 
response rate was 42% and 67% respectively. Median progression-free 
survival was 9.2 months and 12.9 months in arm A and B respectively 
[49]. ALTA-1L study (ALK in lung cancer trial of brigatinib in first-
line), is an ongoing phase III, randomized, open-label trial evaluating 
efficacy and safety of brigatinib versus crizotinib in ALK-positive locally 
advanced or metastatic NSCLC who have not previously been treated 
with an ALK inhibitor [50]. At first interim analysis progression-free 
survival was significantly longer in brigatinib than in crizotinib arm. At 
a median follow up of 11 months the median progression-free survival 
was not reached in brigatinib arm and  9.8 months in crizotinib arm. 
The one-year PFS was 67% in patients receiving brigatinib and  43% in 
patients receiving crizotinib. The objective response rate was 71% with 
brigatinib treatment compared to 60% with crizotinib. There was a clear 
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benefit for brigatinib across all prespecified patient subgroups including 
patients with brain metastases. In patients with measurable brain 
metastases at baseline the confirmed ORR was 78% with brigatinib and 
29% with crizotinib [74].

Lorlatinib
Lorlatinib (PF-06463922) is a third generation, reversible, 

ATP-competitive inhibitor of ALK and ROS1. In the ALK tyrosine 
kinase domain lorlatinib selectively inhibits leucine at position 
1195 (L1195). Lorlatinib has shown superior potency compared 
with clinically available ALK inhibitors and it also addresses the two 
major mechanisms of clinical relapse: ALK resistance mutations and 
brain metastasis [51]. In biochemical studies lorlatinib has proven to 
be more potent than crizotinib, ceritinib and alectinib against wild 
type ALK. It is also the most potent inhibitor against all clinically 
relevant crizotinib-, certinib- and alectinib-resistant ALK mutations 
[51]. It showed activity against L1196M and G1269A, two of the 
most frequently detected crizotinib-resistant mutations observed in 
clinical practice [51-53]. Moreover PF-06463922 inhibits 1151Tins and 
G1202R ALK mutants that confer a high-level of resistance to all second 
generation ALK inhibitors [51,54,55]. Lorlatinib is the most potent and 
brain penetrable ALK-Inhibitor designed to efficiently penetrate the 
blood barrier brain. Crizotinib is active against brain metastases but 
CNS is a common site of relapse [18-20]. Probably resistance is related 
to the inability of the drug to achieve therapeutic concentration in CNS 
compartment because of its high efflux by P glycoprotein (PGP) [56]. 
Second generation ALK inhibitors have shown moderate CNS activity 
[57]. Ceritinb is a PGP substrate and has limited brain penetration [58], 
alectinib is not a PGP substrate [57]. Patients treated with either ceritinib 
and alectinb relapse with brain metastases. Therefore it was necessary 
to design a more potent inhibitor which is not a substrate of PGP, which 
efficently penetrates the blood brain barrier with an increased CNS 
availability [51]. Patient with metastatic ALK-rearranged lung cancer 
received multiple ALK inhibitors during treatment course, including 
first-, second-, and third-generation inhibitors. Shaw et al. described 
resensitization to crizotinib after acquired resistance to lorlatinib. A 
patient with ALK-rearranged lung cancer, developed acquired resistance 
to crizotinib because of the substitution of cysteine by tyrosine at amino 
acid residue 1156 (C1156Y) in the ALK kinase domain. The disease did 
not respond to second generation ALK-inhibitors, but it responds to 
lorlatinib. When the tumor relapsed, sequencing of the resistant tumor 
revealed an ALK L1198F mutation in addition to the C1156Y mutation. 
The L1198F substitution confers resistance to lorlatinib but enhances 
binding to crizotinib resensitizing resistant cancers to crizotinib, a less 
potent and less selective first-generation inhibitor [59]. In a first-in 
man, dose-escalation phase I study, lorlatinib showed both systemic 
and intracranial activity in patients with advanced ALK-positive or 
ROS1-positive NSCLC, most of whom had CNS metastases and had 
previously been treated with two or more TKIs [60]. Lorlatinib might 
be an effective therapeutic strategy for patients with ALK-positive 
NSCLC who have become resistant to currently available TKIs, 
including second-generation ALK TKIs. A phase 3 trial is ongoing to 
to demonstrate whether lorlatinib is superior to crizotinib in advanced, 
treatment-naive, ALK-positive NSCLC [61]. 

Entrectinib
Entrectinib (RXDX-101) is a small molecule which inhibits 

tropomyosin-related kinase (TRK) TRKA, TRKB, TRKC, ROS1 and 
ALK rearrangements. Clinical activity of entrectinib has been assessed 
in 4 clinical trials [62-64]. Combined results derive from two phase 

1 basket trials (ALKA-372-001 and STARTRK-1) conducted in 119 
patients with advanced solid tumor harbouring a recurrent gene 
fusion involving NTRK1/2/3, ROS1, or ALK. Entrectinib demonstrated 
interesting antitumor activity in TKI-naïve patients harboring gene 
rearrangements involving NTRK, ROS1, or ALK genes. Clinical benefits 
were observed abroad a range of solid tumors regardless of histology, 
particularly in patients with NTRK-rearranged tumors. No responses 
were observed in patients with recurrent gene rearrangements 
previously treated with ROS1 or ALK inhibitors. Further investigation 
will be required to determine the activity of this drug in TKI pre-
treated patients considering that RXDX-101 has shown preclinical 
activity against potential resistance mutations such as the ALK L1196M 
mutation that can emerge after crizotinib therapy in ALK-rearranged 
lung cancers. Entrectinib proved interesting intracranial activity against 
both metastatic disease and primary brain tumors [62]. STARTRK-2 
is an ongoing phase 2 basket trial of entrectinib for the treatment of 
patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK 
gene fusion designed to confirm the results of STARTRK-1 and ALKA 
[62,63]. The STARTRK-NG trial is a Phase 1/1b study of entrectinib 
in pediatric patients with cancer, including primary brain tumors, 
neuroblastoma, and other non-neuroblastoma, extracranial solid 
tumors harboring NTRK, ROS1, or ALK gene fusions [64]. 

Resistance to second generation ALK inhibitors
Despite the efficacy of second-generation ALK inhibitors, patients 

invariably relapse. While only 20% of ALK-positive patients developed 
ALK resistance mutations on crizotinib, almost 56% of patients 
progressing on second-generation ALK inhibitor developed ALK 
resistance mutations (ceritinib 54%, alectinib 53%, and brigatinib 71%) 
reflecting the greater potency and selectivity of these agents compared 
with crizotinib (Table 1) [65]. ALK G1202R is the most common ALK 
resistance mutation after treatment with second-generation ALK 
inhibitor. The spectrum of other ALK resistance mutations differs 
across agents. Each ALK inhibitor is associated with a distinct range 
of ALK resistance mutations which provides differential sensitivities to 
second-generation ALK inhibitors with important clinical implications. 
Resistance profiles may evolve over time and in response to sequential 
ALK inhibitors, particular ALK resistance mutations inform the choice 
of subsequent ALK targeted therapies, especially after failure of two 
ALK inhibitors. Lorlatinib has shown to be active against all single ALK 
resistance mutations and was the only ALK inhibitor with significant 
activity against ALK G1202R. Compound resistance mutations are 
principally described in patients who had received multiple ALK 

ALK Resistance
Mutations

Crizotinib
(N=55)

Ceritinib
(N=24)

Alectinib
(N=17)

Brigatinib
(N=7)

1151Tins 2% 0% 0% 0%
C1156Y 2% 8% 0% 0%

I1171T/N/S 2% 4% 12% 0%
F1174L/C 0% 17% 0% 0%
V1180L 0% 4% 6% 0%
L1196M 7% 8% 6% 0%
G1202R 2% 21% 29% 43%

G1202del 0% 8% 0% 0%
D1203N 0% 4% 0% 14%

S1206Y/C 2% 0% 0% 14%
E1210K 2% 0% 0% 29%
G1269A 4% 0% 0% 0%

ALK Mutations 20% 54% 53% 71%

Table 1. Frequence of ALK-resistance mutations after first and second generation ALK-
inhibitors [66]
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inhibitors, suggesting that their development may be facilitate by 
sequential use of ALK inhibitors. Compound resistance mutations 
in ALK-positive NSCLC are analogous to drug resistant T790M/
C797S described following sequential treatment with first- and third-
generation EGFR inhibitors in EGFR-mutant NSCLC. 

Clinical strategies
Based on the results of clinical trials and FDA approval, alectinib 

is the preferred therapy for untreated patients with ALK-positive 
metastatic NSCLC. Crizotinib and ceritinib are also recommended in 
first-line setting [3]. In the phase III trial comparing crizotinib with 
chemotherapy (pemetrexed or docetaxel) as second line treatment, 
patients who continued crizotinb beyond disease progression showed 
a median duration of further treatment of 16 weeks (range 3-73 weeks) 
[5]. In a retrospective analysis of two single-arm trials, patients with 
disease progression who still obtain clinical benefits from crizotinib and 
who were allowed to continue treatment, showed a significantly longer 
overall survival than those who stopped the drug (16.4 vs. 3.9 months) 
[36]. Based on this results patients with asymptomatic progression can 
continue crizotinb. Patients experiencing “oligo-progressive disease” 
(progression in a single site or in up to five sites) can continue crizotinib 
in association with local therapy (surgery and/or ablative treatments) 
[3]. The availability of second- and third-generation ALK-inhibitors has 
extended the therapeutic options both for patients experiencing disease 
progression on crizotinib and for crizotinib-naive patients. Subsequent 
treatments for patients who progress on first-line crizotinib include 
alectinib or ceritinib or brigatinib. Similarly to crizotinib, patients with 

asymptomatic progression or oligoprogression on alectinib or ceritinib 
can continue the drug in association with local therapy. Cytotoxic 
therapy can be proposed to patients with systemic progression in 
multiple sites on crizotinib, alectinib or ceritinib [3] (Figures 3-5).

Toxicity profile of ALK inhibitors
ALK-inhibitors demonstrated an overall interesting toxicity and 

safety profile. Regarding alectinib most adverse events were grade 
1–2, the most frequent were constipation (36%), fatigue (33%), 
peripheral edema (25%) and myalgia (21%). Grade 3–4 events were 
mainly asymptomatic laboratory abnormalities: elevated gamma-GT, 
neutropenia, and hypophosphataemia [43,47]. The most common 
all-grade toxicity of ceritinib was diarrhea and nausea, reported in 
approximately 80% of patients. The most common grade 3–4 events 
were laboratory abnormalities: increased alanine and aspartate 
aminotransferase [38,40]. With regards to brigatinib in ALTA trial 
the most common any-grade adverse events included nausea (arm 
A/B, 33%/40%), diarrhea (arm A/B, 19%/38%), headache (arm A/B, 
28%/27%). A subset of pulmonary adverse events (AE) caracterized by 
early onset (median time to onset 2 days, range 1 to 9 days), dyspnea, 
hypoxia, cough, pneumonia or pneumonitis occurred in 6% of patients. 
These AEs, occurring at 90 mg in boths arms without further events 
after escalation to 180 mg, requires early diagnoses and treatment [49]. 
As reguard to lorlatinib, in phase I clinical trial the most common 
treatment-related adverse events among the 54 enrolled patients were 
hypercholesterolaemia (72%), hypertriglyceridaemia (39%), peripheral 
neuropathy (39%), and peripheral oedema (39%). The most common 

 
Figure 3. ALK-rearrangement positive NSCLC: first-line therapy [3]
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grade 3-4 adverse event was hypercholesterolaemia. Neurologic and 
psychiatric disorders and peripheral neuropathy, occurring in 28% 
to 36% of patients, represent grade 1-2 toxicity but require rapid 
identification and management [60]. With regard to entrectinib, in the 
phase I study ALKA-372-001, the most common all-grade toxicity was 
paresthesia (42%), while asthenia represented the dose-limiting toxicity 
and muscular weakness the most common grade 3-4 events [62]. In 
the STARTRK-1 trial fatigue (33%) was the most common all-grade 
toxicity, neutropenia (11%), fatigue (7%) and cognitive impairment 
(7%) represented the most frequent grade 3–4 events [62].

Target agents and immune check-point inhibitors
Both in oncogene-addicted and molecularly unselected advanced 

NSCLC, mutational load impacts on tumor immunogenicity. Tumor 
cell death induced by chemotherapy and target agents produces the 
release of neoantigen triggering the immune response [66]. Clinical 
trials evaluating combination strategies with target agents in association 
with immune check-points inhibitors, including PD-1/PD-L1 and 
CTLA-4 inhibitors, are ongoing despite available data from CheckMate 
057 [67] and KEYNOTE 010 [68] showed statistically significant 
shorter PFS and borderline lower ORR in EGFR-mutant/ALK-positive 
patients who are generally non-smokers [69] (lower mutational load 
and lower immunogenecity has been observed in never-smoker 

population). Early results from combination trial in selected TKI-
naive or TKI-pretreated EGFR- or ALK-mutated NSCLC showed 
increased anti tumor responses although in some cases safety questions 
[70]. Enrollment in a Phase 1/2 study of nivolumab plus crizotinib 
in previously untreated ALK-positive NSCLC (CheckMate 370) was 
closed and combination treatment was discontinued due to observed 
grade ≥3 hepatic toxicities [71]. In a phase 1 dose escalation study in 
previously treated (ALK inhibitor or chemotherapy) or untreated IIIB/
IV ALK-positive NSCLC, the combination of nivolumab plus ceritinib 
showed an interesting activity but a significant toxicities [72]. JAVELIN 
Lung 101 is a phase 1b/2 dose-finding trial evaluating avelumab plus 
crizotinib or aveumab plus lorlatinib in patients with advanced ALK-
negative/wildtype NSCLC or ALK-positive NSCLC, respectively. The 
combination of avelumab and lorlatinib showed an acceptable safety 
profile, distinct from avelumab and crizotinib, and promising antitumor 
activity in patients with ALK-positive NSCLC. This combination will be 
evaluated in treatment-naive patients in phase 2 trial [73] (Table 2).

Conclusions
Acquired resistance is the main concern of targeted-therapies 

in oncogene-addicted NSCLC. Even in ALK-rearranged NSCLC 
identification of mechanisms of acquired resistance, which can be 

Clinical trial Phase Setting Intervention Status

NCT02574078/
CheckMate 370 I/II Newly diagnosed/maintenance LA/

stage IV NSCLC Nivolumab+erlotinib (group D)/crizotinib (group E)
Ongoing, not
recruiting for

group E
NCT01998126 I Stages II–IV TKI-naïve or TKI-treated for less than 6 months 

EGFR- or ALKmutated NSCLC Nivolumab/ipilimumab+ erlotinib/crizotinib Ongoing, not
recruiting

NCT02511184 I Newly diagnosed LA/stage IV ALKpositive non-squamous 
NSCLC Pembrolizumab +crizotinib Recruiting

NCT02013219 I
LA/stage IV TKI-naïve EGFR-mutated

and treatment-naïve ALK-positive
NSCLC

Atezolizumab+erlotinib/
alectinib

Ongoing, not
recruiting

NCT02584634/
Javelin Lung 101 Ib/II

LA/stage IV pretreated ALK-negative
(group A) or ALK-positive (group B)

NSCLC
Avelumab+crizotinib (group A)/lorlatinib (group B) Recruiting

NCT02898116 I/II Stage IV ALK rearranged NSCLC Durvalumab+ensartinib Recruiting

NCT01998126 I Stages II–IV TKI-naïve or TKI-treated for less than 6 months 
EGFR- or ALKmutated NSCLC Ipilimumab+erlotinib/crizotinib Ongoing, not

recruiting

Table 2. Clinical trials of immune checkpoint inhibitors in combination with ALK TKIs in advanced NSCLC [72]
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target-dependent or target-independent, will be essential to design 
the best treatment strategy in each patient. Repeating biopsies after 
progression on TKIs will play a crucial role in treatment algorithm. 
Terapeutic strategies for non-target dependent acquired resistance 
still remain an open issue. New paradigms, including combination 
treatment and association with immunoterapy, are under investigation 
to identify new opportunities of therapy (Figure 6). The introduction 
of novel, more potent compound in untreated ALK-positive NSCLC 
highlights the need to develop studies evaluating sequences of targeted 
therapies versus upfront next-generation molecules to define which 
strategy could offer the longer control of disease.
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